# A Log-linear Block Transliteration Model based on Bi-Stream HMMs

### **Bing Zhao**

Joint work with

### Nguyen Bach, Ian Lane, and Stephan Vogel

Language Technologies Institute Carnegie Mellon University

April 2007

# **OOV-words in Machine-Translation**

#### Machine Translation systems are closed vocabulary

Translation hypotheses cannot be generated for any source word that did not appear in training corpora

#### Rejecting OOV words will drastically degrade the quality & usability of translation

OOV words often major components of semantic content i.e. Named-Entities (Person/Place names)



To generate semantically equivalent translations OOV words must also be accurately translated

 Improve not only translation usability but also effectiveness of multilingual applications

# Transliteration for Machine Translation

- In large-vocabulary SMT systems OOV-words are typically person or place names
  - ightarrow these words can be accurately translated via transliteration

| Source Language                          | <b>English Transliteration</b> |
|------------------------------------------|--------------------------------|
| German: <u>K</u> onstantino <u>polis</u> | <u>C</u> onstantino <u>ple</u> |
| Arabic: دمشق <b>(Dmk)</b>                | Damascus                       |
| Spanish: Adelaida                        | Adelaid <u>e</u>               |

Transliteration of place-names for different language pairs

# Difficulty of transliteration dependent on language pair > Arabic → English

- Vowels must be hypothesized
- Ambiguity arises due to multiple possible transliterations
- i.e: خفاجي  $\rightarrow$  xfAjy  $\rightarrow$  Mahasin / Muhasan / Mahsan

Arabic Script

Romanized

English Transliteration

# **Machine Transliteration: Previous Works**

## Rule-based approaches

> Rule-set either manually defined or automatically generated

#### → Only appropriate for close language-pairs (*poor performance for Arabic→English transliteration*)

## Statistical approaches

- > Finite state transducers (Knight & Graehl 1997, Stalls & Knight, 1998)
- Model combination (Al-Onaizan 2002, Huang, 2005)
- $\rightarrow$  Specific approach typically limited to target language pair

## Transliteration as Statistical-Machine-Translation

- Highly portable framework
  - Only require transliteration examples (i.e. from Bilingual dictionary)
- > Able to generate high quality transliterations
  - Outperforms rule-based approaches language pairs with high ambiguity

# **Transliteration-specific SMT**

# Define phonetic and position-dependent letter classes

Broad phonetic classes consistent across languages

i.e. transliterate: consonant  $\rightarrow$  consonant, vowel  $\rightarrow$  vowel

# Propose Bi-Stream HMM framework to estimate both letter and letter-class

## Constrain fertility

> Typically, number of letters similar across language-pair

> Constrained fertility for Arabic  $\rightarrow$  English

### Force monotonicity

Phonetic reordering does not occur in transliteration

# Perform transliteration via "transliteration-blocks"

> Improve handling of context during transliteration

Propose "block-level" transliteration framework

## Multiple features combined via Log-linear model

# **Transliteration-specific SMT**

# **Proposed Framework**

# Outline

Transliteration as Translation (T.a.T)

# Models for Block Transliteration

- IBM-Model-4
- Bi-Stream HMM
- > Bi-Stream HMM combined with a Log-linear model

## Transliteration of Unseen Named-Entities

- Special setups for transliterations
- Configurations of SMT decoder
- Spelling checker

# Conclusions and Discussions

# **System Architecture**



# **Alignment for Transliteration**



# Letter-classes in Bi-stream HMM (I)

## English Pronunciation is structured

> CVC: Consonant-Vowel-Consonant

## Defining Non-Overlapping Letter classes

- ➢ <u>Vowels</u>: a e i o u ....
- <u>Consonants</u>: k j l ....
- <u>Ambi-class</u>: can be both vowel and consonant, e.g "y"
- <u>Unknown</u>: letters without linguistic clues
  - numbers like 'III'
  - punctuations like '-'
  - typos in the names
- Additional position markers: initial & final

# From HMM to Bi-Stream HMM (II)

### Monotone nature in letter alignment

From left to right letter-level alignment

### Bi-Stream HMM

- Enriched with letter classes
- Generating letter sequence
- Generating letter-class sequence

#### Configure Transition Probability

Configured for strict monotone alignment

# From HMM to Bi-Stream HMM (III)

$$\Pr(f_1^J \mid e_1^I) = \sum_{a_1^J} \prod_{j=1}^J p(f_j \mid e_{a_j}) p(a_j \mid a_{j-1})$$

Name-Pair

Letter-transliteratios ftate-Transition

$$\Pr(f_1^J, F_1^J | e_1^I, E_1^I) = \sum_{a_1^J} \prod_{j=1}^J p(f_j | e_{a_j}) p(F_j | E_{a_j}) p(a_j | a_{j-1})$$
$$a_j - a_{j-1} \ge 0$$

# **Block Extraction from Letter Alignment**



# **Block Extraction from Letter Alignment**



# **Block Extraction from Letter Alignment**



# Feature Functions by a Block (1)

- Two main non-overlapping parts: inner & outer
- Both parts should be explained well



# Feature Functions by a Block (2)

#### Length relevance

- Letter level fertility probability
- > A dynamic programming

#### Letter n-gram lexicon scores

- > IBM-1 letter-to-letter transliteration prob.
- > IBM Model-1 style score for named-entity pair

# Distortions of the letter n-gram centers [inner only]

- > Letter n-gram pairs are assumed along the diagonal
- Gaussian distribution for the centers' positions

Feature functions are computed for both **Inner** and **Outer** parts, and in both directions

# **Length Relevance Score**

## Motivations

- > Name-pairs usually have similar lengths in characters;
- > A letter is transliterated into less than 4 letters.

# Length Relevance Score

- > How many letters we want to generate in the target name;
- > Letter fertilities in both direction.

# Dynamic Programming

Compute length relevance



# **Letter N-gram Lexicon Score**

#### Motivations

- Letter to letter transliteration probabilities
- > Letter to letter mapping is captured by lexicons

## Transliteration Prob.

- Compute statistics from letter alignment
- Learn lexicons in both directions

## Name-Pair Transliteration score

Compute IBM Model-1 style scores:

$$\Pr(\vec{e} \mid \vec{f}) = (\frac{1}{I})^{J} \prod_{j} \sum_{i} \Pr(f_{j} \mid e_{i})$$
$$\Pr(\vec{f} \mid \vec{e}) = (\frac{1}{J})^{I} \prod_{i} \sum_{j} \Pr(e_{i} \mid f_{j})$$

# Distortions of the letter n-gram centers

#### Motivations

- Monotone alignment nature for name-pairs
- > Aligned n-gram pairs are mostly located along the diagonal

# Position relevance for ngram-pairs

- > The center of the block should be along the diagonal
- > Define the centers for source and target letter-ngrams:

$$\odot_{e_i^{i+k}}(f_{j'}) = \frac{1}{|E|} \cdot \frac{\sum_{i'=i}^{(i+k)} i' \cdot P(f_{j'}|e_{i'})}{\sum_{i'=i}^{(i+k)} P(f_{j'}|e_{i'})}$$

$$\odot_{f_j^{j+l}} = \frac{1}{|F|} \sum_{j'=j}^{j'=j+l} \frac{j'}{l+1}$$

## Gaussian Distribution

$$P(\odot_{f_j^{j+l}}|\odot_{e_i^{i+k}}) \approx P(\odot_{f_j^{j+l}}-\odot_{e_i^{i+k}})$$
  
=  $N((\odot_{f_j^{j+l}}-\odot_{e_i^{i+k}});\mu,\sigma)$ 

# Learning a log-linear model

- Gold standard blocks from human labeled data
- Log-linear model to combine feature functions:

$$Pr(X|\mathbf{e}, \mathbf{f}) = \frac{\exp(\sum_{m=1}^{M} \lambda_m \phi_m(X, \mathbf{e}, \mathbf{f}))}{\sum_{\{X'\}} \exp(\sum_{m=1}^{M} \lambda_m \phi_m(X', \mathbf{e}, \mathbf{f}))},$$

- Model parameters:  $\{\lambda_m\}$ 
  - > Weights for particular feature functions

#### Learning algorithm:

- Improved Iterative Scaling
- Simplex downhill

# **System Architecture**



# **Decoding Transliteration Lattice**

Source: *i k m zu d* Target: *I w c t y o* 

- Search in corpus for Transliteration Blocks
- Insert edges into the lattice





# **Experiments**

- Training and Test data sets
- Evaluation metric

# Comparisons across systems

- Three systems
- Applying a spelling checker
- Simple Comparison with Google Translations
- Some examples for MT output

# **Training and Test Data**

| Corpus         | Size | Туре                           |
|----------------|------|--------------------------------|
| LDC2005G01-NGA | 74K  | Bilingual geographic<br>names  |
| LDC2005G021    | 11K  | Bilingual person names         |
| LDC2004L02     | 6K   | <b>Bulkwalter Arabic Morph</b> |

- <u>91K</u> name-pairs training dataset
- <u>100</u> name-pairs development dataset
- <u>540</u> *unique* name-pairs as the held-out dataset
- <u>97</u> *unique* name-pairs from MT03 NIST-SMT eval.

# Additional Test Data (II)

#### Blind test set: Arabic-English Tides 2003

- <u>286</u> unique tokens were left un-translated
- > Among them: **97** un-translated unique person, location names

| Arabic      | BAMA      | Reference  |
|-------------|-----------|------------|
| غرابو       | grAbw     | Grabo      |
| قشطة        | qXTp      | Qishta     |
| ايتساخرف    | fAytsAxr  | Weizsacker |
| والـدحمانـي | wAldHmAny | al-Dahmani |
| يللويغيرز   | zylwygyr  | Zellweger  |
| ئاكسين      | vAksyn    | Thaksin    |

# **Experimental Setup (I)**

#### System-1 (Baseline)

- > IBM Model-4 in both directions
- Refined letter alignment
- Blocks are extracted according to heuristics

#### System-2 (L-Block)

- IBM Model-4 in both directions
- Refined letter alignment
- > Blocks are extracted according to a log-linear model

#### System-3 (LCBE)

- Bi-stream HMM in both directions
- Refined letter alignment
- > Blocks are extracted according to a log-linear model

#### Evaluation method:

Edit-Distance between hyp against possibly multiple references Src = "mHmd" Ref = Muhammad / Mohammed

Acceptable translation if edit distance = 1Perfect match if edit distance = 0

# **Experiments for the unseen MT03**

| System     | Accuracy |
|------------|----------|
| Baseline   | 39.2%    |
| L-Block    | 41.3%    |
| LCBE       | 46.4%    |
| LCBE+Spell | 52%      |

- Log-linear Block extraction: +2.1%
- Bi-stream HMM with letter-classes: +5.1%
- Spelling checker: +3.6%

#### **Experiments for Held-out and Test data**



- Held-out set 540 uniq names
  - Perfect/Exact match
  - Edit-distance of 1

- Unseen set (MT03) 97 uniq names:
  - Perfect/Exact match
  - Edit-distance of 1

# **Comparing with Google v.s. T.a.T**

- The Arabic-English Google Web Translation (Google)
- Accuracy <u>45%</u> (as in June 20, 06) for the 1best hypothesis while our system archives <u>52%</u>

| Source          | Reference      | T.a.T        | Google         |  |  |
|-----------------|----------------|--------------|----------------|--|--|
| سومای           | Sumaye         | Sumaye       | Somai          |  |  |
| هاز وميتسو      | Hazumitsu      | Hazumitsu    | Hazoumitso     |  |  |
| يـــــلاه       | Yalahow        | Ylahu        | Elaho          |  |  |
| نكباخت          | Nikbakht       | Nkb akht     | Nkbacht        |  |  |
| ميكويــــاس     | Mikulas        | Mikulas      | Mikoias        |  |  |
| كومـــار اتونج  | Kumaratunga    | Kumaratunga  | Kumaratung     |  |  |
| همدان           | Hamdan         | Hamdan       | Hamedan        |  |  |
| لماز انــدار ان | Mazandaran     | Mazandaran   | Mazandaran     |  |  |
| ويكرمس ينغه     | Wickremasinghe | Wikramsinghe | The Ekermsingh |  |  |

# **Conclusion & Future Work**

- A transliteration system using available SMT sys
- The result is comparable with the state-of-theart systems
  - Significantly better than Rule based system (52% v.s. 14%)
  - Log-linear model, Bi-stream HMM, and Spelling checker

#### Future extensions

- > System re-configurations for other language pairs
- New features for transliterations
- > Models for letter alignment for transliteration
- > Algorithms for extracting letter n-gram pairs for transliteration

**Thanks!** 

# **Questions?**



### Training - Generator:

- Given "lybyry" & "liberian" how many possible rules?
- > A: Alignment by calculating edit distance



- > Use all optimal paths to extract rules according to alignment paths
- > Distinguish rules for begin, middle, and end
- Use consonants to anchor rule

| 400 |          | Trans        | formation | Translite | ration Rule | s Frequency | j from 5820 | 0 Arabic- | English pairs | 3     |     |
|-----|----------|--------------|-----------|-----------|-------------|-------------|-------------|-----------|---------------|-------|-----|
| 400 |          | 1            | I         | I         | I           | I           | I           | Ι         | "rules,       | freq" | +   |
| 350 | _        | From         | 5820 pa   | airs      |             |             |             |           |               |       | _   |
|     |          | Total:       | 19957     | differen  | t rules     |             |             |           |               |       |     |
| 300 | <b>-</b> | Mox fr       |           | <b>`</b>  |             | Hea         | Head list   |           |               |       | -   |
| ŧ   | ŧ        | wax rreq: 37 | eq. 378   | 9         | 379         | An          | an          | Begin     |               |       |     |
| 250 | <b>–</b> | Min fre      | eq: 1     |           |             | 345         | q           | са        | Begin         |       | _   |
|     |          |              |           |           |             | 303         | Х           | sh        | Begin         |       |     |
| 200 | ŧ        |              |           |           |             | 286         | nd          | nd        | Middle        |       |     |
| =   | ŧ        |              |           |           |             | 283         | ry          | ri        | End           |       |     |
| 450 |          |              |           |           |             | 273         | ny          | ni        | End           |       |     |
| 130 |          |              |           |           |             | 252         | kt          | ph        | Begin         |       |     |
|     |          |              |           |           |             | 252         | qr          | car       | Begin         |       |     |
| 100 |          |              |           |           |             | 219         | Х           | kha       | Begin         |       | -   |
|     |          |              |           |           |             | 217         | Х           | kh        | Begin         |       |     |
| 50  | 1        |              |           |           |             |             |             |           |               |       | -   |
|     |          |              |           |           |             |             |             |           |               |       |     |
| 0   | 0        | 2000         | 4000      | 6000      | 8000        | 10000       | 12000       | 14000     | 16000         | 18000 | 200 |
|     |          |              |           |           |             | Rules       |             |           |               |       |     |

#### Training - Learner:

- How to know which rule is good or bad?
- For each rule, apply it to the held-out data & use reduction of character errors as figure of merit

# Decoding - Applicator:

- > Application order: Begin -> End -> Middle
- Confidence threshold: filter out unreliable rules
- Application strategy: for each source word, find all possible rules, and <u>apply them in order</u>

# **Evaluation (Rule-based vs. T.a.T)**

Rule-based Transliteration vs. Transliteration-as-Translation by percentage of different top N candidates in Arabic Tides 2003 Eval set



Significantly outperform rule-base

# Applying a spelling checker



Spelling Checker effectively improved the accuracy significantly

# **Incorporating T.a.T to SMT**

Arabic text source sentence

كولمبو 4 يناير / شينخوا/ حذر رئيس الوزراء السريلانكي رانيل ويكرمسينغه الرئيسة تشاندريكا كوماراتونجا من مغبة تدمير عملية السلام التي ترعاها

SMT hypothesis

النرويج

 in colombo 4 january 1997, the xinhua / warned by the prime minister {UNK لا تشاندريكا كومار اتونج) chairperson {UNK رانيل ويكرمسينغه السريلانكى
cautioned the destruction of the peace process sponsored by norway

SMT with T.a.T

 in colombo 4 january 1997, the xinhua / warned by the prime minister Srilankan Ranil Wikramsinghe charperson Chandrika Kumaratunga cautioned the destruction of the peace process sponsored by norway

*Reference* translation

 Colombo 04/01 (Xinhua) Sri Lankan Prime Minister Ranil Wickremasinghe warned the country's President Chandrika Kumaratunga of the consequences of destroying the peace process sponsored by the Norwegians