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Background

Named Entity Recognition (NER) has been applied to a lot of domains such as news , E-commerce ,
social media and bio-medicine . Several recent studies focus on improving the accuracy of NER models
through utilizing image information (MNER) in tweets .

prediction
=
Pretrained textual Image feature Most approches to MNER use the attention
embedding extractor mechanism to model the interaction between
A Image and text representations which are
RT @ whitesox - Chris Sale @ T T pretrained based on mono-modal data

H H SHINY [WORLD SERIES]
has his eyes on the prize T RIS separately.
AR . WE HAVE THE TEAM
SES®. TO DO THAT. | DON'T
{ N0 'WANT THE PAYDAY.
} | WANT THE
\ CELEBRATION.”
~CHRIS SALE




prediction

*

Problems
* Image and text representations are trained
' Pretrained textual I featu
separately and ot alignec

A

* Pretrained vision-language (V+L) models do not | |
RT @ whitesox : Chris . J g ot
WOrk We” on MNER Sale has his eyes on the § (
prize i

ANV

NS

"“‘\ . “‘u ,7\

49 1 7’\, 3 “CHRIS SALE
AuAllIN LA

* The models are trained with common nouns instead of
named entities
* The image modality only plays an auxiliary role in MNER preglitction
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MNER based on VLP models



Motivation

Pretrained textual embeddings can utilize contexts to improve the token
representation of a sequence, maybe the images in MNER can be
converted to texts as contexts?

* By converting the image to texts:
* the image representations can be aligned to the space of text representations

* the attention module of the pretrained textual embeddings can easily model the
Interactions between aligned image and text representations, without introducing a

new attention module.



Model Architecture
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Cross-View Alignment

* Limitations
* What if iImages are not avallable?

* What about time-critical scenarios (aligning images to texts requires
several steps In pre-processing)?

* Noises In the image can mislead the MNER to make wrong predictions

* Solution

* Cross-View Alignment (CVA) between the multi-modal input view and
text-only input view

Lova()= ) po(y|w)log py(y|w)
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Results

Approach Twitter-15 | Twitter-17 | SNAP

REPORTED F1 OF PREVIOUS APPROACHES
BERT-CRF' 71.81 83.44 -
OCSGA* 72.92 - -
UMT' 73.41 85.31 -
RIVA? 73.80 - 36.80
RpBERTbase" 74.40 - 87.40
UMGF® 74.85 85.51 -

OUR REPRODUCTIONS

BERT-CRF 74.779 85.18 85.98
UMT 72.83 84.88 -
UMGF 74.42 85.27 -
RpBERT) e 67.21 - 62.14
Ours: ITA-All, cva 76.01 86.45 87.44




How ITA Eases the Cross-Modal Alignments
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Conclusions

* [TA converts Images into object labels, captions and OCR texts to
align the iImage representations into textual space

* CVA let the MNER models better utilize the text information in the
INput

* We show that ITA significantly outperforms previous state-of-the-
art approaches on MNER datasets

* We further analyze how ITA eases the cross-modal alignments
and how the images affect the NER prediction
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