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Motivation

• Most of the previous work of sequence labeling focused on 
monolingual models.

• It is resource consuming to train and serve multiple monolingual 
models online.

• A unified multilingual model: smaller, easier, more generalizable.

• However, the accuracy of the existing unified multilingual model is 
inferior to monolingual models.

2



Our Solution

Knowledge
Distillation
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Background: Sequence Labeling
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Background: Sequence Labeling

Exponentially number of 
possible labeled sequences
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Top-K Distillation

Top-K label sequence
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Top-WK Distillation
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Posterior Distillation Posterior Distribution
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Structure-Level Knowledge Distillation
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Results

• Monolingual teacher models outperform multilingual student 
models

• Our approaches outperform the baseline model

• Top-WK+Posterior stays in between Top-WK and Posterior
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Zero-shot Transfer
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KD with weaker teachers
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k Value in Top-K
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Conclusion

• Two structure-level KD methods: Top-K and Posterior distillation

• Our approaches improve the performance of multilingual models 
over 4 tasks on 25 datasets.

• Our distilled model has stronger zero-shot transfer ability on the 
NER and POS tagging task.
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