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Abstract

This paper describes BiLSTM-based models to disfluency de-
tection in speech transcripts using residual BiLSTM blocks,
self-attention, and noisy training approach. Our best model not
only surpasses BERT in 4 non-Switchboard test sets, but also
is 20 times smaller than the BERT-based model [1]. Thus, we
demonstrate that strong performance can be achieved without
extensively use of very large training data. In addition, we show
that it is possible to be robust across data sets with noisy training
approach in which we found insertion is the most useful noise
for augmenting training data.

Index Terms: disfluency detection, LSTM, noise, robust,
BERT, speech recognition.

1. Introduction

Disfluencies are interruptions in the regular flow of speech, such
as using uh and um, pausing silently, repeating words, or inter-
rupting oneself to correct something said previously. Disfluen-
cies typically include filler pauses, explicit editing terms, dis-
course markers, coordinating conjunctions.

State-of-the-art speech translation systems are making
progress to generate more usable translation outputs. Disflu-
encies are important to model in speech translation because
they cause problems not only for translation but also for higher
level natural language processing, such as information extrac-
tion, summarization and translation. Disfluencies also degrade
transcript readabililty for humans and make the speech transla-
tion output less intelligible.

Disfluency detection is the task of distinguishing fluent
from disfluent segments. We categorize disfluency detection
methods into four main approaches: speech-based, parsing-
based, tagging-based, and translation-based.

Speech-based approach Speech is passed through an en-
ergy based voice activity detector to identify silent and low en-
ergy regions which are useful to detect filled pauses [2]. An-
other method is to locate evidence of a general disfluency which
are called interruption points (IPs). Generally, it looks in the
nearby context of the IP to find the disfluent words. The most
successful approaches so far combine the detection of IPs using
prosodic features and language modeling techniques and speech
signals [3, 4].

Parsing-based approach The tree adjoining grammar
(TAG) noisy channel model was proposed to identify the possi-
bility of a word being disfluent in [5]. Following along the line
of TAG models is the extension of using a language model and
MaxEnt reranker [6, 7]. [8, 9] proposed syntax-based models
such as transition-based dependency parsing to jointly perform
dependency parsing and disfluency detection.

Tagging-based approach The disfluency detection prob-
lem is treated as tagging problem in which words are tagged
by disfluency types or simply fluent/disfluent tags. This line
of work includes sequence modeling techniques such as hidden
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Markov models (HMM), conditional random field (CRF) [10],
semi-Markov models [11], bi-directional long short-term mem-
ory (BiLSTM), auto-correlational neural network [12, 13], and
convolutional neural network (CNN) [14].

Translation-based approach This approach considers dis-
fluent text as the source language and the clean text as target
language. Phrase-based translation model [15] and seq2seq-
based model [16] were proposed to demonstrate this idea. [17]
archived the state-of-the-art performance on the Switchboard
data set with a Transformer-based model [18].

In this paper, we explore different BILSTM-based architec-
tures to detect disfluency words. We try to answer the following
questions:

* Can we push the current state-of-the-art performance on
commonly used speech corpus, Switchboard, further?

* How embeddings and self-attention will affect prediction
performances?

* Can we replicate the success of residual architecture in
this task?

¢ How robust are the networks across different test sets?

In Section 2, we describe the network architectures and
training method. We describe the experiment setting in Section
3. Experimental results and analysis are reported in Section 4.

2. Methods

Throughout this paper we consider the disfluency detection
problem as a sequence labeling problem which falls into the
tagging-based approach. The input is sequence of transcription
words © = (x1, x2, ..., x7) and the output is a sequence of la-
bels y = (y1,¥2,...,yr) where z; is in the ASR vocabulary
and y; is in {@dis, O} tag set'.

There are several ways to tackle the sequence label prob-
lem and we choose to focus on the state-of-the-art architectures
described in [19] and [20]. Figure 1 shows the core building
blocks of these models which include

* Sequence representation at character and word level
given the input x

 Bidirectional LSTM captures both past and future se-

mantic information in sequence from left and right con-
text. Eq. 1 shows formulas to update LSTM unit at time
t [21]
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'@dis and O are referred to as disfluency and ordinary.
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where o and ® are element-wise sigmoid function and
product, respectively. x; is the input vector, e.g embed-
dings, at time . h; is the output vector, e.g hidden state,
at time ¢. Us are weight matrices for input x;, and W's
are weight matrices for hidden state h;. bs denotes bias
vectors.

* CREF allows us to model the label sequence y jointly as
showed in Eq. 2 in which a softmax over all possible tag
sequences yields a probability for the sequence y
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where f; and \; are the j feature function and weight.
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Figure 1: A BiLSTM CRF (BC) architecture for sequence label-
ing [19] and [20]

2.1.

A modification for the BILSTM CREF architecture is to have a
richer word embedding layer such as GLoVe [22] and ELMo
[23] embeddings. [23] shows the state-of-the-art performance
in the CoNLL 2003 NER task when using the ELMo embed-
ding. In the disfluency detection context we create two variants

¢ GloVe BiLSTM CRF (GBC): replace the word embed-
ding layer with GloVe

¢ ELMo GloVe BiLSTM CRF (EGBC): combine ELMo
and GloVe word embeddings.

Word representation

We decided not using the BERT embeddings since it obtains
lower performance than the fine-tune approach as shown in [1].

2.2. Self-Attention

Self-attention, also known as intra-attention, is an attention
mechanism relating different positions of a single sequence in
order to compute a representation of the same sequence. It has
been shown to be very useful in machine translation [18, 24],
machine reading [25], or image description generation [26].
Similarly, self-attention mechanism has been showing benefi-
cial for the sequence labeling task as in [27] and [28]. We follow
[28] and use multiplicative attention in our implementations.
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2.3. Residual BiLSTM block

BiLSTM
BiLSTM

Figure 2: A BiLSTM residual block

A traditional way of adding more representational power
to a neural network is layer stacking which has been success-
fully used in a lot of works [29, 30]. The core idea is introduc-
ing an identity shortcut connection that skips one or more BiL.-
STM layers. [29] shows that stacking layers do not degrade the
network performance, because we could simply stack identity
mappings” upon the current network, and the resulting architec-
ture would perform the same. Figure 2 presents a ResNet-style
BiLSTM residual block in which we skip one BiLSTM layer.

2.4. Noisy training
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Figure 3: ELMo Glove residual BiLSTM Attention CRF archi-
tectures in which the residual block is repeated N times

Figure 3 illustrates the model architecture which includes
richer word representation, residual BiLSTM, and self-attention
blocks. One of the key challenges in disfluency detection is
dealing with noise. Particularly, the noise comes from

* ASR errors: insertion, repetition, and deletion of words

e multi-turn dialog: interruptions, topic interweave, and
chitchat content

* non-native speaker: grammatical errors

In this paper we decide to focus on dealing with ASR error
types. Following the idea in [31] we use the corrupted inputs to
train a robust disfluency detection model. Essentially, in the be-
ginning of each training epoch, we randomly select a n percent
of the training data, clean it and augment the clean transcription
with a noise type.

2 An identity mapping is layer that does not do anything



 Insertion (iNoise): we first pick how many words to in-
sert with a probability constraint. The next step is to
randomly select insert position and words. All insertion
words will be labeled as disfluency.

* Deletion (dNoise): we randomly delete a word in a given
segment and after deletion all remaining words are la-
beled as ordinary, non-disfluent words.

* Repetition (rNoise): we randomly pick a position to
start a repetition, and randomly pick repetition length in
between 1 and 4 words. All repeated words are labeled
as disfluency.

3. Experiment settings

Benchmark data The English Switchboard Corpus® is proba-
bly the most widely used data set for benchmarking the English
disfluency performance. The Switchboard corpus has three dis-
fluency annotation levels which are

* DFF: disfluency annotation only
* MGD: disfluency annotation and part-of-speech tags

e DPS: disfluency annotation, part-of-speech tags and
turns joined

We use the DPS annotation. We follow the same train and test
splitting by [5] in order to keep a direct comparison with pre-
vious works. Specifically, we use sw4[0-1]* files as the test
set and the rest is for training and development sets. All data
is preprocessed with lower case, no punctuation, and treebank
tokenizer.

We apply a similar labeling scheme as in [17] with 2 labels O
and @Qdis. An example of the Switchboard data is

and/O /0 do/O n’t/O have/O to/@dis to/O be/O
writing/O checks/O

Other data sets To further evaluate our methods, we use addi-
tional corpora

e CallHome: telephone conversations between family
members and close friends

e SCOTUS: oral arguments between justices and advo-
cates

* FCIC: two hearings from Financial Crisis Inquiry Com-
mission

 Interview: two TV interviews of a non-native English
speaker

CallHome, SCOTUS, FCIC corpora are obtained via [32]. The
Interview is our in-house corpus which followed the Switch-
board’s disfluency annotation guidelines.

Metrics We use token-based precision (P), recall (R), and F-
score (F1) as the evaluation metrics which is also used in other
works [11, 12, 33, 17].

Settings Our implementations are based on Tensorflow, Keras,
and Anago*. We use Nvidia P100 GPUs to conduct training
and decoding experiments. All hyper parameters are tuned in
the development set. The BERT [1] experiment is based on
the PyTorch pretrained BERT® with uncased base model. The
BERT fine-tuned model is trained with 4 epochs as suggested

3https://catalog.Idc.upenn.edu/LDCI9IT42
“https://github.com/Hironsan/anago
Shttps://github.com/huggingface/pytorch-pretrained-BERT
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by the BERT team with max sequence length 75 and batch size
32. For our models, we fix the batch size and training epochs
as 128 and 10 respectively. BILSTM output space for word and
character are 100 and 25 respectively. The residual BiLSTM
contains 6 residual blocks. We fix the percentage amount data
which will be used during noisy training to 1 percent.

4. Results

Table 1: Results of disfluency detection on the English Switch-
board data set. The first section shows pervious work. The
second section describes our baseline with the richer word em-
bedding method. The third section presents the contribution
of residual, self-attention, and noisy training over our base-
line. The forth section shows the BERT fine-tuned model per-
Sformance.

Method P R F1

Weight sharing [17] 92.1 90.2 911
Transition-based [33] 91.1 84.1 87.5
BiLSTM [12] 91.6 803 859
Semi-CRF [11] 90.0 812 854
EGBC 959 86.3 909
GBC 93.1 809 86.6
BiLSTM CRF (BC) [20] 91.6 79.6 852
EGBC + residual + iNoise 957 883 918
EGBC + residual + self-attention 94.5 88.6 91.5
EGBC + residual 96.1 869 91.2
BERT fine-tune [1] 947 89.8 922

4.1. Switchboard results

Table 1 shows our main result on the Switchboard data set. We
first observe that using richer word representations improves
disfluency labelling significantly. For example the BiLSTM
CRF (BC) in [19] gains 1.4 F1 score when replacing its word
embedding with GloVe embedding as showed in GBC model.
The gain is even bigger with 5.7 F1 improvement when both
GloVe (G) and ELMo (E) embeddings are used as showed in
EGBC model. The EGBC model performs very close the state-
of-the-art weight-sharing model in [17].

We found that the EGBC model can be further im-
proved with residual BiLSTM, self-attention, and noisy train-
ing. Residual BiLSTM and insertion noise help the EGBC
model outperform the state-of-the-art system [17] by 0.7 F1
score. We further use the pretrained uncased base BERT model
for fine-tuning on the Switchboard train set and archive 92.2 F1
score. This is our best model on the Switchboard corpus.

4.2. Non-Switchboard results

The previous section shows experimental results when train and
test are both on the Switchboard. The BERT fine-tuned model
is the best model on Switchboard, however, our proposed model
is only behind by 0.4 F1 score. An interesting question is how
would these models trained on Switchboard perform differently
on other data sets.

Table 2 shows the model performances on CallHome,
FCIC, SCOTUS, and Interview data sets. We also compute the
average F1 score across test set to get a performance overview.



Table 2: Results on 4 non-Switchboard test sets. The last column shows an average F1 score across 4 test sets. The first is our best model
on Switchboard, and the second is the baseline model. The third section describes different noisy training scheme over the baseline
including insertion, deletion, and repetition noise. The last section presents the model with residual BiLSTM block, self-attention, and

insertion noise.

Method CallHome FCIC SCOTUS Interview Average F1
P R Fl P R Fl P R Fl P R Fl
BERT fine-tune [1] 238 580 337 455 572 507 664 711 687 471 48 476 50.18
EGBC 248 559 343 463 548 502 67.1 714 692 535 435 48 50.43
EGBC + iNoise 239 608 343 48 57 523 694 706 70 479 449 464 50.75
EGBC + dNoise 226 595 328 431 586 497 634 707 668 45 439 444 48.43
EGBC + rNoise 214 665 324 402 63 491 62 726 669 417 475 444 482
EGBC + residual 247 60.1 350 507 538 522 717 677 696 575 423 487 51.38

+ self-attention + iNoise

We found that by adding insertion noise during training helps
the EGBC to be more robust. We see that the EGBC with resid-
ual blocks, self-attention and insertion noise outperforms the
BERT fine-tuned model by 1.2 F1 score on average across 4
test sets. Our models surpassed BERT in all 4 non-Switchboard
test sets.

Furthermore, it is noted that the BERT model is a huge
model in comparison with our models. The number of parame-
ters in BERT is nearly 20 times larger than our biggest model as
showed in Table 3. As a result, our models require less resource
for model development and product deployment than the BERT
model

Table 3: The number of model parameters

Method Parameters
BERT fine-tune (base uncased) 110 million
EGBC 2.9 million
EGBC + residual + self-attention + iNoise 5.6 million

Table 4 presents the disfluency detection output of the
EGBC with residual blocks, self-attention and insertion noise.

Table 4: Examples of disfluency detection. The red cross-out
is our model disfluency detection. The blue underline is the
reference annotation.

Switchboard | but they ’ve been in office since the the

nineteen forties

CallHome
FCIC

and then at night claudia gives the me a

1 i not referring t0 4 speetfie i referring
to the fact that we look at our risks and
we look at our positions

SCOTUS what i 41 what respect do you claim he

is not properly deportable

Interview life is a full of failures if people say
you krow nobody helped me when we
do business you always want people to
help you but if there ’s no people to help

you
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5. Conclusions

In this paper we proposed methods to detect disfluency based
on residual BiLSTM blocks, self-attention, and noisy training.
Our major contributions are model architectures, noisy train-
ing approach for disfluency detection task. We shows that on
the Switchboard data set the new state-of-the-art results is 92.2
F1 score with the BERT fine-tuned model. Experimental re-
sults show that by combining residual BiLSTM blocks, self-
attention, and insertion noise on top of a strong baseline, our
model outperforms BERT by 1.2 F1 score on average across 4
non-Switchboard test sets. We show that our models are not
only nearly 20 times smaller than BERT-based model but also
surpasses BERT in 4 non-Switchboard test sets.

This work can be expanded in several directions. First, we
plan to dive deeper into the noisy training approach, and partic-
ularly with speech recognition transcription. We envision there
are still some room for improvement in the noisy training ap-
proach. Moreover, we intend to explore how disfluency detec-
tion can be used for speech translation application the way that
benefit users most.
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