Noisy BiLSTM-based Models for Disfluency Detection

Nguyen Bach and Fei Huang Machine Intelligence Technology Lab, DAMO Academy, Alibaba Group {nguyen.bach, f.huang}@alibaba-inc.org

Summary

- 1.2 F1 score on average across 4 non-Switchboard test sets.
- Switchboard test sets.

BiLSTM Residual

A ResNet-style BiLSTM residual block in which we skip one **BiLSTM** layer

Noisy Training

- Insertion (iNoise): we first pick how many words to insert with a probability constraint. The next step is to randomly select insert position and words. All insertion words will be labelled as disfluency.
- Deletion (dNoise): we randomly delete a word in a \bullet given segment and after deletion all remaining words are labelled as ordinary, non-disfluent words.
- Repetition (rNoise): we randomly pick a position to start a repetition, and randomly pick repetition length in between 1 and 4 words. All repeated words are labelled as disfluency.
- We fix the percentage amount data which will be used during noisy training to 1 percent.

Disfluency detection based on residual BiLSTM blocks, self-attention, and noisy training

Combining residual BiLSTM blocks, self-attention, and noisy training outperforms the BERT fine-tuned model by

Our models are not only nearly 20 times smaller than BERT-based model but also surpasses BERT in 4 non-

EGBC

EGBC is a residual BiLSTM-CRF network includes ELMo, GLoVe embeddings, character context LM, selfattention, and noisy training.

Training example on the Switchboard: and/O i/O do/O n't/O have/O to/@dis to/O be/O writing/O checks/O

Batch size and training epochs are set as 128 and 10 respectively. BiLSTM output space for word and character are 100 and 25 respectively. The residual BiLSTM contains 6 residual blocks.

Experimental Results

formance.

Method	Р	R	F1
Weight sharing [17]	92.1	90.2	91.1
Transition-based [33]	91.1	84.1	87.5
BiLSTM [12]	91.6	80.3	85.9
Semi-CRF [11]	90.0	81.2	85.4
EGBC	95.9	86.3	90.9
GBC	93.1	80.9	86.6
BiLSTM CRF (BC) [20]	91.6	79.6	85.2
EGBC + residual + iNoise	95.7	88.3	91.8
EGBC + residual + self-attention	94.5	88.6	91.5
EGBC + residual	96.1	86.9	91.2
BERT fine-tune [1]	94.7	89.8	92.2

insertion noise.

Method	CallHome		FCIC		SCOTUS		Interview		Average F1				
	Р	R	F1	Р	R	F1	Р	R	F1	Р	R	F1	in en age i i
BERT fine-tune [1]	23.8	58.0	33.7	45.5	57.2	50.7	66.4	71.1	68.7	47.1	48	47.6	50.18
EGBC	24.8	55.9	34.3	46.3	54.8	50.2	67.1	71.4	69.2	53.5	43.5	48	50.43
EGBC + iNoise EGBC + dNoise EGBC + rNoise	23.9 22.6 21.4	60.8 59.5 66.5	34.3 32.8 32.4	48 43.1 40.2	57 58.6 63	52.3 49.7 49.1	69.4 63.4 62	70.6 70.7 72.6	70 66.8 66.9	47.9 45 41.7	44.9 43.9 47.5	46.4 44.4 44.4	50.75 48.43 48.2
EGBC + residual + self-attention + iNoise	24.7	60.1	35.0	50.7	53.8	52.2	71.7	67.7	69.6	57.5	42.3	48.7	51.38

Method	Parameters
BERT fine-tune (base uncased)	110 million
EGBC	2.9 million
EGBC + residual + self-attention + iNoise	5.6 million

Examples

the reference annotation.

Switchboard	but they 've been in office since the the
CallHome	and then at night claudia gives $\frac{\text{the}}{\text{the}}$ me
FCIC	i i not referring to a specific i referring
SCOTUS	what in in what respect do you claim h
Interview	life is a full of failures if people say yo people to help you but if there 's no pe

Table 1: Results of disfluency detection on the English Switchboard data set. The first section shows pervious work. The second section describes our baseline with the richer word embedding method. The third section presents the contribution of residual, self-attention, and noisy training over our baseline. The forth section shows the BERT fine-tuned model per-

Table 2: Results on 4 non-Switchboard test sets. The last column shows an average F1 score across 4 test sets. The first is our best model on Switchboard, and the second is the baseline model. The third section describes different noisy training scheme over the baseline including insertion, deletion, and repetition noise. The last section presents the model with residual BiLSTM block, self-attention, and

Table 3: The number of model parameters

Table 4: Examples of disfluency detection. The red cross-out is our model disfluency detection. The blue underline is

nineteen forties

to the fact that we look at our risks and we look at our positions he is not properly deportable

www nobody helped me when we do business you always want eople to help you