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Abstract

The evaluation campaign of the International
Conference on Spoken Language Translation
(IWSLT 2020) featured this year six chal-
lenge tracks: (i) Simultaneous speech transla-
tion, (ii) Video speech translation, (iii) Offline
speech translation, (iv) Conversational speech
translation, (v) Open domain translation, and
(vi) Non-native speech translation. A total
of 30 teams participated in at least one of
the tracks. This paper introduces each track’s
goal, data and evaluation metrics, and reports
the results of the received submissions.

1 Introduction [Marcello]

The International Conference on Spoken Lan-
guage Translation (IWSLT) is an annual scien-
tific conference (Akiba et al., 2004; Eck and
Hori, 2005; Paul, 2006; Fordyce, 2007; Paul,
2008, 2009; Paul et al., 2010; Federico et al.,
2011, 2012; Cettolo et al., 2013, 2014, 2015,
2016, 2017; Niehues et al., 2018, 2019) for the
study, development and evaluation of spoken lan-
guage translation technology, including: speech-
to-text, speech-to-speech translation, simultane-
ous and consecutive translation, speech dubbing,
cross-lingual communication including all multi-

modal, emotional, para-linguistic, and stylistic as-
pects and their applications in the field. The goal
of the conference is to organize evaluations and
sessions around challenge areas, and to present
scientific work and system descriptions. This pa-
per reports on the evaluation campaign organized
by IWSLT 2020, which features six challenge
tracks:

• Simultaneous speech translation, address-
ing low latency translation of talks, from En-
glish to German, either from a speech file into
text, or from a ground-truth transcript into
text;

• Video speech translation, targeting multi-
modal speech translation of video clips into
text, either from Chinese into English or from
English into Russian

• Offline speech translation, proposing
speech translation of talks from English into
German, using either cascade architectures or
end-to-end models, able to directly translate
source speech into target text;

• Conversational speech translation, target-
ing the translation of highly disfluent conver-
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sations into fluent text, from Spanish to En-
glish, starting either from audio or from a ver-
batim transcript;

• Open domain translation, addressing
Japanese-Chinese translation of unknown
mixed-genre test data by leveraging hetero-
geneous and noisy web training data.

• Non-native speech translation, considering
speech translation of English-to-Czech and
English-to-German speech in a realistic set-
ting of non-native spontaneous speech, in
somewhat noisy conditions.

The challenge tracks were attended by 30 par-
ticipants (see Table 1), including both academic
and industrial teams. This correspond to a signifi-
cant increment with respect to the last year’s eval-
uation campaign, which saw the participation of
12 teams. The following sections report on each
challenge track in detail, in particular: the goal
and automatic metrics adopted for the challenge,
the data used for training and testing data, the re-
ceived submissions and the summary results. A
detailed account of the results for each challenge
is instead reported in a corresponding appendix.

2 Simultaneous Speech Translation

Simultaneous machine translation has become an
increasingly popular topic in recent years. In par-
ticular, simultaneous speech translation enables
interesting applications such as subtitle transla-
tions for a live event or real-time video-call trans-
lations. The goal of this challenge is to examine
systems for translating text or audio in a source
language into text in a target language from the
perspective of both translation quality and latency.

2.1 Challenge
Participants were given two parallel tracks to enter
and encouraged to enter both tracks:

• text-to-text: translating ground-truth tran-
scripts in real-time.

• speech-to-text: translating speech into text in
real-time.

For the speech-to-text track, participants were able
to submit systems either based on cascaded or end-
to-end approaches. Participants were required to
implement a provided API to read the input and
write the translation, and upload their system as a

Docker image so that it could be evaluated by the
organizers. We also provided an example imple-
mentation and a baseline system1.

Systems were evaluated with respect to qual-
ity and latency. Quality was evaluated with the
standard metrics BLEU (Papineni et al., 2002a),
TER (Snover et al., 2006b) and METEOR (Lavie
and Agarwal, 2007). Latency was evaluated with
the recently developed metrics for simultaneous
machine translation including average proportion
(AP), average lagging (AL) and differentiable av-
erage lagging (DAL) (Cherry and Foster, 2019).
These metrics measure latency from an algorith-
mic perspective and assume systems with infinite
speed. For the first edition of this task, we report
wall-clock times only for informational purposes.
In the future, we will also take wall-clock time into
account for the official latency metric.

Three regimes, low, medium and high, were
evaluated. Each regime was determined by a
maximum latency threshold. The thresholds were
measured with AL, which represents the delay to a
perfect real-time system (milliseconds for speech
and number of words for text). The thresholds
were set to 3, 6 and 15 for the text track and to
1000, 2000 and 4000 for the speech track, and
were calibrated by the baseline system. Partic-
ipants were asked to submit at least one system
per latency regime and were encouraged to submit
multiple systems for each regime in order to pro-
vide more data points for latency-quality trade-off
analyses.

2.2 Data
Participants were allowed to use the same train-
ing and development data as in the Offline Speech
Translation track. More details are available in
§4.2.

2.3 Submissions
The simultaneous task received submissions from
4 teams: 3 teams entered both the text and the
speech tracks while 1 team entered the text track
only. Teams followed the suggestion to submit
multiple systems per regime, which resulted in a
total of 56 systems overall.

ON-TRAC (Elbayad et al., 2020) participated
in both the speech and text tracks. The authors
used a hybrid pipeline for simultaneous speech

1https://github.com/pytorch/fairseq/
tree/simulastsharedtask/examples/
simultaneous_translation

https://github.com/pytorch/fairseq/tree/simulastsharedtask/examples/simultaneous_translation
https://github.com/pytorch/fairseq/tree/simulastsharedtask/examples/simultaneous_translation
https://github.com/pytorch/fairseq/tree/simulastsharedtask/examples/simultaneous_translation
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Team Organization
AFRL Air Force Research Laboratory, USA (Ore et al., 2020)
APPTEK/RWTH AppTek and RWTH Aachen University, Germany (Bahar et al., 2020a)
BHANSS Samsung Research, South Korea (Lakumarapu et al., 2020)
BUT Brno University of Technology, Czech Republic (no system paper)
CASIA Inst. of Automation, Chinese Academy of Sciences, China (Wang et al., 2020b)
CUNI Charles University, Czech Republic (Polák et al., 2020)
DBS Deep Bleu Sonics, China (Su and Ren, 2020)
DIDI LABS DiDi Labs, USA (Arkhangorodsky et al., 2020)
ELITR CUNI + KIT + UEDIN (Machác̆ek et al., 2020)
FBK Fondazione Bruno Kessler, Italy (Gaido et al., 2020)
HY University of Helsinki, Finland (Vázquez et al., 2020)
HW-TSC Huawei Co. Ltd, China (Wang et al., 2020a)
IITB Indian Institute of Technology Bombay, India (Saini et al., 2020)
ISTIC Inst. of Scientific and Technical Inf. of China (Wei et al., 2020)
KINGSOFT Kingsoft, China. (no system paper)
KIT Karlsruhe Institute of Technology, Germany (Pham et al., 2020)
KSAI Kingsoft AI Lab, China (no system paper)
NAIST Nara Institute of Science and Technology, Japan (Fukuda et al., 2020)
NICT National Institute of Comm. Techn., Japan (no system paper)
OCTANOVE Octanove Labs LLC, USA (Hagiwara, 2020)
ON-TRAC ONTRAC Consortium, France (Elbayad et al., 2020)
OPPO Beijing OPPO Telecommunications Co., Ltd., China (Zhang et al., 2020)
SJTU Shanghai Jiao Tong University, China (no system paper)
SRC-B Samsung Research, China (Zhuang et al., 2020)
SRPOL Samsung Research , Poland (Potapczyk and Przybysz, 2020)
SRSK Samsung Research, South Korea (Han et al., 2020)
TAMKANG Tamkang University, Taiwan (no system paper)
TSUKUBA University of Tsukuba, Japan (Cui et al., 2020)
UEDIN University of Edinburgh, UK(Chen et al., 2020)
XIAOMI Xiaomi AI Lab, China (Sun et al., 2020)

Table 1: List of Participants

translation track, with a Kaldi-based speech recog-
nition cascaded with transformer-based machine
translation with wait-k strategy (Ma et al., 2019).
In order to save the cost of encoding every time
an input word is streamed, a uni-directional en-
coder is used. Multiple wait-k paths are jointly
optimized in the loss function. This approach was
found to be competitive with the original wait-k
approach without needing to retrain for a specific
k.

SRSK (Han et al., 2020) participated in the
speech and text tracks. This is the only submission
to use an end-to-end approach for the speech track.
The authors use transformer-based models com-
bining the wait-k strategy (Ma et al., 2019) with
a modality-agnostic meta learning approach (In-
durthi et al., 2020) to address data sparsity. They

also use the ST task along with ASR and MT as
the source task, a minor variation explored com-
pared to the original paper. In the text-to-text
task, the authors also explored English-German
and French-German as source tasks. This train-
ing setup is facilitated using a universal vocabu-
lary. They analyzed models with different values
in wait-k during training and inference and found
the meta learning approach to be effective when
the data is limited.

AppTek/RWTH (Bahar et al., 2020a) partici-
pated in the speech and text tracks. The authors
proposed a novel method to simultaneous trans-
lation, by training an additional binary output to
predict chunk boundaries in the streaming input.
This module serves as an agent to decide when the
contextual information is sufficient for the decoder
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to write output. The training examples for chunk
prediction are generated using word alignments.
On the recognition side, they fixate the ASR sys-
tem to the output hypothesis that does not change
when further context is added. The model chooses
chunk boundaries dynamically.

KIT (Pham et al., 2020) participated in the
text track only. The authors used a novel read-
write strategy called Adaptive Computation Time
(ACT) (Graves, 2016). Instead of learning an
agent, a probability distribution derived from en-
coder timesteps, along with the attention mech-
anism from (Arivazhagan et al., 2019b) is used
for training. The ponder loss (Graves, 2016) was
added to the cross-entropy loss in order to encour-
age the model towards shorter delays. Different
latency can be achieved by adjusting the weight of
the ponder loss.

2.4 Results

We discuss results for the text and speech tracks.
More details are available in Appendix A.1.

2.4.1 Text Track
Results for the text track are summarized in the
first table of Appendix A.1. Only the ON-TRAC
system was able to provide a low latency model.
The ranking of the systems is consistent through-
out the latency regimes. The results for all systems
are identical between the high latency regime and
the unconstrained regime except for SRSK who
submitted a system above the maximum latency
threshold of 15.

In the table, only the models with the best
BLEU score for a given latency regime are re-
ported. In order to obtain a broader sense
of latency-quality thresholds, we plot in Fig-
ure 1 all the systems submitted to the text
track. The ON-TRAC models present competi-
tive trade-offs across a wide latency range. The
APPTEK/RWTH system obtains competitive per-
formance for medium latency, but its characteris-
tics in low and high latency regimes are unclear.

2.4.2 Speech Track
Results for the speech track are summarized in
the second table of Appendix A.1. We also re-
port latency-quality trade-off curves in Figure 2.
The ON-TRAC system presents better trade-offs
across a wide latency range. We also note that the
APPTEK/RWTH systems are all above the highest

Figure 1: Latency-quality trade-off curves, measured
by AL and BLEU, for the systems submitted to the text
track.

Figure 2: Latency-quality trade-off curves, measured
by AL and BLEU, for the systems submitted to the
speech track.

latency threshold of 4000, which makes it difficult
to compare its trade-offs to other systems.

2.5 Future Editions

In future editions, we will include wall-clock time
information as part of the official latency met-
ric. This implies that the evaluation will be run
in a more controlled environment, for example,
the hardware will be defined in advance. We
will also encourage participants to contrast cas-
cade and end-to-end approaches for the simulta-
neous speech track.

3 Video Speech Translation

We are living the multiple modalities world in
which we see objects, hear sounds, feel texture,
smell odors, and so on. The purpose of this shared
task is to ignite possibilities of multimodal ma-
chine translation. This shared task examines meth-
ods for combining video and audio sources as in-
put of translation models.

3.1 Challenge

In this year’s evaluation campaign, we added the
video translation track to ignite possibilities of
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multimodal machine translation. This track ex-
amines methods for combining video and audio
sources as input of translation models. We of-
fer two evaluation tasks. The first one is the
constrained track in which systems are required
to only use the datasets we provided in the data
section. The second one was unconstrained sys-
tems in which additional datasets are allowed.
Both tasks are available for Chinese-English and
English-Russian language pairs.

3.2 Data

We are focusing on e-Commerce domain, particu-
larly on the live video shows similar to the ones on
e-Commerce websites such as AliExpress, Ama-
zon, and Taobao. A typical live show has at least
one seller in a wide range of recording environ-
ments. The live show contents cover product de-
scription, review, coupon information, chitchat be-
tween speakers, interactive chat with audiences,
commercial ads, and breaks. We planned to col-
lect videos from Taobao for Chinese-English, and
videos from AliExpess for English-Russian.

We have experienced data collection and an-
notation challenges during these unprecedented
times. Our English-Russian plan could not be car-
ried out smoothly. Therefore, instead of collect-
ing and annotating e-Commerce videos, we use
the How2 dataset2 and translate the dev and test
sets from English to Russian.

For Chinese-English, we collected ten Taobao
full live shows which last between fifteen min-
utes and four hours. After quality check, we keep
seven live shows for annotation. For each live
show we sampled video snippets ranging from 1 to
25 minutes relatively to the length of the original
show. Audio files are extracted from video snip-
pets. Each audio file is further split into smaller
audios based on the silence and voice activities.
We ask native Chinese speakers to provide hu-
man transcriptions. For human translation, we en-
courage annotators to watch video snippets before
translating. There are 2 English translation refer-
ences for a total of 104 minutes of Chinese live
shows. All data is available on GitHub3.

3.3 Submissions

We received 4 registrations, however, due to the
pandemic we received only 1 submissions from

2https://srvk.github.io/how2-dataset/
3https://github.com/nguyenbh/iwslt2020 video translation

team HW-TSC. We also used the cascaded speech
translation cloud services from 2 providers which
will be named as Online A and Online B.

Team HW-TSC participated in the Chinese-
English unconstrained sub-task. HW-TSC sub-
mission is a cascaded system of a speech recog-
nition system, a disfluency detection system, and
a machine translation system. They simply extract
the sound tracks from videos, then feed them to
their proprietary ASR system and proceed tran-
scripts to downstream modules. ASR outputs are
piped into a BERT-based disfluency detection sys-
tem which performs repeat spoken words removal,
detect insertion and deletion noise. For the ma-
chine translation part, a transformer-big has been
employed. They experimented multi-task learn-
ing with NMT decoding and domain classification,
back translation and noise data augmentation. For
the details of their approach, please refer to their
paper (Table 1).

3.4 Results

We use vizseq4 as our main scoring tool. We
evaluate ASR systems in CER without punctua-
tions. The final translation outputs are evaluated
with lower-cased BLEU, METEOR, and chrF. We
also break down the translation performances by
the CER error buckets with sentence-level BLEU
scores. HW-TSC has a better corpus-level perfor-
mance than other online cloud services. All sys-
tems are sensitive to speech recognition errors.

4 Offline Speech Translation

In continuity with last year (Niehues et al., 2019),
the offline speech translation task required par-
ticipants to translate English audio data extracted
from TED talks5 into German. Participants could
submit translations produced by either cascade ar-
chitectures (built on a pipeline of ASR and MT
components) or end-to-end models (neural solu-
tions for the direct translation of the input audio),
and were asked to specify, at submission time,
which of the two architectural choices was made
for their system.

Similar to last year, valid end-to-end submis-
sions had to be obtained by models that:

• Do not exploit intermediate discrete repre-
sentations (e.g., source language transcrip-

4https://github.com/facebookresearch/vizseq
5http://www.ted.com

http://www.ted.com
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tion or hypotheses fusion in the target lan-
guage);

• Rely on parameters that are all jointly trained
on the end-to-end task

4.1 Challenge

While the cascade approach has been the domi-
nant one for years, the end-to-end paradigm has
recently attracted increasing attention as a way
to overcome some of the pipeline systems’ prob-
lems, such as higher architectural complexity and
error propagation. In terms of performance, how-
ever, the results of the IWSLT 2019 ST task still
showed a gap between the two approaches that,
though gradually decreasing, was still of about 1.5
BLEU points. In light of this, the main question
we wanted to answer this year is: is the cascaded
solution still the dominant technology in spoken
language translation? To take stock of the sit-
uation, besides being allowed to submit systems
based on both the technologies, participants were
asked to translate also the 2019 test set, which last
year was kept undisclosed to enable future com-
parisons.

This year’s evaluation also focused on a key is-
sue in ST, which is the importance of a proper
segmentation of the input audio. One of the find-
ings of last year’s campaign, which was carried
out on unsegmented data, was indeed the key role
of automatically segmenting the test data in way
that is close to the sentence-level one present in
the training corpora. To shed light on this aspect,
the last novelty introduced this year is the pos-
sibility given to participants to process the same
test data released in two versions, namely with
and without pre-computed audio segmentation.
The submission instructions included the request
to specify, together with the type of architecture
(cascade/end-to-end) and the data condition (con-
strained/unconstrained – see §4.2) also the chosen
segmentation type (own/given).

Systems’ performance is evaluated with re-
spect to their capability to produce trans-
lations similar to the target-language refer-
ences. To enable performance analyses from
different perspectives, such similarity is mea-
sured in terms of multiple automatic metrics:
case-sensitive/insensitive BLEU (Papineni et al.,
2002b), case-sensitive/insensitive TER (Snover
et al., 2006a), BEER (Stanojevic and Sima'an,
2014), and CharacTER (Wang et al., 2016). Simi-

lar to last year, the submitted runs are ranked based
on the case-sensitive BLEU calculated on the test
set by using automatic re-segmentation of the hy-
potheses based on the reference translations by
mwerSegmenter.6

4.2 Data
Training and development data. Also this year,
participants had the possibility to train their sys-
tems using several resources available for ST, ASR
and MT. The training corpora allowed to satisfy
the “constrained” data condition include:

• MuST-C (Di Gangi et al., 2019a)

• WIT3 (Cettolo et al., 2012)

• Speech-Translation TED corpus7

• How2 (Sanabria et al., 2018)8

• LibriVoxDeEn (Beilharz and Sun, 2019)9

• Europarl-ST (Iranzo-Sánchez et al., 2020)

• TED LIUM v2 (Rousseau et al., 2014) and v3
(Hernandez et al., 2018)

• all the data provided by WMT 201910

• OpenSubtitles 2018 (Lison et al., 2018)

• Augmented LibriSpeech (Kocabiyikoglu
et al., 2018)11

• Mozilla Common Voice12

• LibriSpeech ASR corpus (Panayotov et al.,
2015)

The list of allowed development data includes
the dev set from IWSLT 2010, as well as the
test sets used for the 2010, 2013, 2014, 2015
and 2018 IWSLT campaigns. Using other train-
ing/development resources was allowed but, in
this case, participants were asked to mark their
submission as an “unconstrained” one.

6https://www-i6.informatik.
rwth-aachen.de/web/Software/
mwerSegmenter.tar.gz

7http://i13pc106.ira.uka.de/˜mmueller/
iwslt-corpus.zip

8only English - Portuguese
9only German - English

10http://www.statmt.org/wmt19/
11only English - French
12https://voice.mozilla.org/en/datasets

– English version en 1488h 2019-12-10

https://www-i6.informatik.rwth-aachen.de/web/Software/mwerSegmenter.tar.gz
https://www-i6.informatik.rwth-aachen.de/web/Software/mwerSegmenter.tar.gz
https://www-i6.informatik.rwth-aachen.de/web/Software/mwerSegmenter.tar.gz
http://i13pc106.ira.uka.de/~mmueller/iwslt-corpus.zip
http://i13pc106.ira.uka.de/~mmueller/iwslt-corpus.zip
http://www.statmt.org/wmt19/
https://voice.mozilla.org/en/datasets
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Test data. A new test set was released by
processing, with the same pipeline used to build
MuST-C (Di Gangi et al., 2019a), a new set of 22
talks that are not included yet in the public release
of the corpus. To measure technology progress
with respect to last year’s round, participants were
asked to process also the undisclosed 2019 test
set. Both test corpora were released with and with-
out sentence-like automatic segmentation. For the
segmented versions, the resulting number of seg-
ments is 2,263 (corresponding to about 4.1 hours
of translated speech from 22 talks) for the 2020
test set and 2,813 (about 5.1 hours from 25 talks)
for the 2019 test set.

4.3 Submissions
We received submissions from 10 participants
(twice as much compared to last year’s number)
coming from the industry, the academia and other
research institutions. Eight teams submitted at
least one run obtained with end-to-end technology,
showing a steady increase of interest towards this
emerging paradigm. In detail:

• 5 teams (DiDiLabs, FBK, ON-TRAC,
BHANSS, SRPOL) participated only with
end-to-end systems;

• 3 teams (AppTek/RWTH, KIT, HY) submit-
ted runs obtained from both cascade and end-
to-end systems;

• 2 teams (AFRL, BUT) participated only with
cascade systems.

As far as input segmentation is concerned, par-
ticipants are equally distributed between the two
possible types, with half of the total submitting
only runs obtained with the given segmentation
and the other half submitting at least one run with
in-house solutions. In detail:

• 5 teams (BHANSS, BUT, DiDiLabs, FBK,
HY) participated only with the given segmen-
tation of the test data;

• 2 teams (AFRL, ON-TRAC) participated
only with their own segmentation;

• 3 teams (AppTek/RWTH, KIT, SRPOL) sub-
mitted runs for both segmentation types.

Finally, regarding the data usage possibilities,
all teams opted for constrained submissions ex-
ploiting only the allowed training corpora listed in
§4.2.

In the following, we provide a bird’s-eye de-
scription of each participant’s approach.

AFRL (Ore et al., 2020) participated with a
cascade system that included the following steps:
(1) speech activity detection using a neural net-
work trained on TED-LIUM, (2) speech recog-
nition using a Kaldi system (Povey et al., 2011)
trained on TED-LIUM, (3) sentence segmenta-
tion using an automatic punctuator (a bidirectional
RNN with attention trained on TED data using Ot-
tokar Tilk13), and (4) machine translation using
OpenNMT (Klein et al., 2017). The contrastive
system differs from the primary one in two as-
pects: Step 3 was not applied, and the transla-
tion results were obtained using Marian (Junczys-
Dowmunt et al., 2018) instead of openNMT.

AppTek/RWTH (Bahar et al., 2020b) partic-
ipated with both cascade and end-to-end speech
translation systems, paying attention to careful
data selection (based on sentence embedding sim-
ilarity) and weighting. In the cascaded ap-
proach, they combined: (1) high-quality hybrid
automatic speech recognition (based on hybrid
LSTM/HMM model and attention models trained
on data augmented with a variant SpecAugment
(Park et al., 2019), layer-wise pretraining and CTC
loss (Graves et al., 2006) as additional loss), with
(2) the Transformer-based neural machine trans-
lation. The end-to-end direct speech translation
systems benefit from: (1) pre-training of adapted
LSTM-based encoder and Transformer-based de-
coder components, (2) an adapter component in-
between, and (3) synthetic data and fine-tuning.
All these elements make the end-to-end models
able to compete with the cascade ones in terms of
MT quality.

BHANSS (Lakumarapu et al., 2020) built their
end-to-end system adopting the Transformer ar-
chitecture (Vaswani et al., 2017a) coupled with
the meta-learning approach proposed in (Indurthi
et al., 2020). Meta-learning is used mitigate the
issue of over-fitting when the training data is lim-
ited, as in the ST case, and allows their system
to take advantage of the available ASR and MT
data. Along with meta-learning, the submitted
system also exploits training on synthetic data cre-
ated with different techniques. These include au-
tomatic English to German translation to generate
artificial text data, and speech perturbation with

13https://pypi.org/project/punctuator/

https://pypi.org/project/punctuator/
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the Sox audio manipulation tool14 to generate arti-
ficial audio data similar to (Potapczyk et al., 2019).

BUT (unpublished report) participated with
cascade systems based on (Vydana et al., 2020).
They rely on ASR-MT Transformer models con-
nected through neural hidden representations and
jointly trained with ASR objective as an auxiliary
loss. At inference time, both models are connected
through n-best hypotheses and the hidden repre-
sentation that correspond to the n-best hypotheses.
The n-best hypothesis from the ASR model are
processed in parallel by the MT model. The like-
lihoods of the final MT decoder are conditioned
on the likelihoods of the ASR model. The discrete
symbol token sequence, which is obtained as the
intermediate representation in the joint model, is
used as an input to an independent text-based MT
model, whose outputs are ensembled with the joint
model. Similarly, the ASR module of the joint
model is ensembled from a separately trained ASR
model.

DiDiLabs (Arkhangorodsky et al., 2020) par-
ticipated with an end-to-end system based on the
S-Transformer architecture proposed in (Di Gangi
et al., 2019b,c). The base model trained on MuST-
C was extended in several directions by: (1)
encoder pre-training on English ASR data, (2)
decoder-pre-training on German ASR data, (3) us-
ing wav2vec (Schneider et al., 2019) features as
inputs (instead of Mel-Filterbank features), and
(4) pre-training on English to German text transla-
tion with an MT system sharing the decoder with
S-Transformer, so to improve the decoder’s trans-
lation ability.

FBK (Gaido et al., 2020) participated with
an end-to-end-system adapting the S-Transformer
model (Di Gangi et al., 2019b,c). Its training
is based on: i) transfer learning (via ASR pre-
training and – word/sequence – knowledge dis-
tillation), ii) data augmentation (with SpecAug-
ment (Park et al., 2019), time stretch (Nguyen
et al., 2020a) and synthetically-created data), iii)
combining synthetic and real data marked as dif-
ferent “domains” as in (Di Gangi et al., 2019d),
and iv) multitask learning using the CTC loss
(Graves et al., 2006). Once the training with word-
level knowledge distillation is complete the model
is fine-tuned using label smoothed cross entropy
(Szegedy et al., 2016).

HY (Vázquez et al., 2020) participated with

14http://sox.sourceforge.net/

both cascade and end-to-end systems. For the
end-to-end system, they used a multimodal ap-
proach (with audio and text as the two modalities
treated as different languages) trained in a multi-
task fashion, which maps the internal represen-
tations of different encoders into a shared space
before decoding. To this aim, they incorporated
the inner-attention based architecture proposed by
(Vázquez et al., 2020) within Transformer-based
encoders (inspired by (Tu et al., 2019; Di Gangi
et al., 2019c)) and decoders. For the cascade ap-
proach, they used a pipeline of three stages: (1)
ASR (trained with S-Transformer (Di Gangi et al.,
2019c)), (2) re-punctuation and letter case restora-
tion (based on Marian’s implementation (Junczys-
Dowmunt et al., 2018) of Transformer), and (3)
MT (also based on Marian).

KIT (Pham et al., 2020) participated with both
end-to-end and cascade systems. For the end-
to-end system they applied a deep Transformer
with stochastic layers (Pham et al., 2019b). Po-
sition encoding (Dai et al., 2019) is incorporated
to mitigate issues due to processing long audio in-
puts, and SpecAugment (Park et al., 2019) is ap-
plied to the speech inputs for data augmentation.
The cascade architecture has three components:
(1) ASR (both LSTM (Nguyen et al., 2020b)
and Transformer-based (Pham et al., 2019a)) (2)
Segmentation (with a monolingual NMT system
(Sperber et al., 2018) that adds sentence bound-
aries and case, also inserting proper punctua-
tion), and (3) MT (a Transformer-based encoder-
decoder model implementing Relative Attention
following (Dai et al., 2019) adapted via fine-tuning
on data incorporating artificially-injected noise).
The WerRTCVAD toolkit15 is used to process the
unsegmented test set.

ON-TRAC (Elbayad et al., 2020) participated
with end-to-end systems, focusing on speech seg-
mentation, data augmentation and the ensembling
of multiple models. They experimented with sev-
eral attention-based encoder-decoder models shar-
ing the general backbone architecture described
in (Nguyen et al., 2019), which comprises an en-
coder with two VGG-like (Simonyan and Zisser-
man, 2015) CNN blocks followed by five stacked
BLSTM layers. All the systems were devel-
oped using the ESPnet end-to-end speech pro-
cessing toolkit (Watanabe et al., 2018). An ASR

15https://github.com/wiseman/
py-webrtcvad

http://sox.sourceforge.net/
https://github.com/wiseman/py-webrtcvad
https://github.com/wiseman/py-webrtcvad
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model trained on Kaldi (Povey et al., 2011) was
used to process the unsegmented test set, training
the acoustic model on the TED-LIUM 3 corpus.
Speech segments based on the recognized words
with timecodes were obtained with rules, whose
thresholds were optimised to get a segment dura-
tion distribution in the development and evaluation
data that is similar to the one observed in the train-
ing data. Data augmentation was performed with
SpecAugment (Park et al., 2019), speed perturba-
tion, and by automatically translating into German
the English transcription of MuST-C and How2.
The two synthetic corpora were combined in dif-
ferent ways producing different models that were
eventually used in isolation and ensembled at de-
coding time.

SRPOL (Potapczyk and Przybysz, 2020) par-
ticipated with end-to-end systems based on the one
(Potapczyk et al., 2019) submitted to the IWSLT
2019 ST task. The improvements over last year’s
submission include: (1) the use of additional train-
ing data (synthetically created, both by translating
with a Transformer model as in (Jia et al., 2019)
and via speed perturbation with the Sox audio ma-
nipulation tool); (2) training data filtration (ap-
plied to WIT3 and TED LIUM v2); (3) the use of
SpecAugment (Park et al., 2019); (4) the introduc-
tion of a second decoder for the ASR task, obtain-
ing a multitask setup similar to (Anastasopoulos
and Chiang, 2018); (5) the increase of the encoder
layer depth; (6) the replacement of simpler convo-
lutions with Resnet-like convolutional layers; and
(7) the increase of the embedding size. To process
the unsegmented test set, the same segmentation
technique used last year was applied. It relies on
iteratively joining, up to a maximal length of 15s,
the fragments obtained by dividing the audio input
with a silence detection tool.

4.4 Results

Detailed results for the offline ST task are pro-
vided in Appendix A.3. For each test set (i.e.
this year’s tst2020 and last year’s tst2019), the
scores computed on unsegmented and segmented
data (i.e. own vs given segmentation) are reported
separately. Background colours are used to differ-
entiate between cascade (white background) and
end-to-end architectures (grey).

Cascade vs end-to-end. Looking at the results
computed with case-sensitive BLEU (our primary
evaluation metric), the first interesting thing to

remark is that the highest score (25.3 BLEU) is
achieved by an end-to-end system, which out-
performs the best cascade result by 0.24 BLEU
points. Although the performance difference be-
tween the two paradigms is small, it can be consid-
ered as an indicator of the steady progress done by
end-to-end approaches to ST. Back to our initial
question “is the cascaded solution still the dom-
inant technology in ST?”, we can argue that, at
least in this year’s evaluation conditions, the two
paradigms are now close (if not on par) in terms of
final performance.

The importance of input segmentation. An-
other important aspect to consider is the key role
played by a proper segmentation of the input
speech. Indeed, the top five submitted runs are
all obtained by systems operating under the “un-
segmented” condition, that is with own segmenta-
tion strategies. This is not surprising considering
the mismatch between the provided training ma-
terial (often “clean” corpora split into sentence-
like segments, as in the case of MuST-C) and the
supplied test data, whose automatic segmentation
can be far from being optimal (i.e. sentence-like)
and, in turn, difficult to handle. The importance
of a good segmentation becomes evident looking
at the scores of those teams that participated with
both segmentation types (i.e. AppTek/RWTH,
KIT, SRPOL): in all cases, their best runs are ob-
tained with own segmentations. Looking at these
systems through the lens of our initial question
about the distance between cascade and end-to-
end approaches, it’s interesting to observe that, al-
though the two approaches are close when partici-
pants applied their own segmentation, the cascade
is still better when results are computed on pre-
segmented data.16 Specifically, on unsegmented
data, AppTek/RWTH’s best cascade score (22.49
BLEU) is 2 points better than their best end-to-end
score (20.5). For KIT’s submissions the distance
is slightly larger (22.06 - 19.82 = 2.24). In light of
this consideration, as of today it is still difficult to
draw conclusive evidence about the real distance
between cascade and end-to-end ST since the ef-
fectiveness of the latter seems to highly depend a
critical pre-processing step.

Progress wrt 2019. Comparing participants’ re-
sults on tst2020 and tst2019, the progress made by

16This is only possible for the submissions by
AppTek/RWTH and KIT, since SRPOL participated
only with their own segmentation.



10

the ST community is quite visible. Before con-
sidering the actual systems’ scores, it’s worth ob-
serving that the overall ranking is almost identical
on the two test sets. This indicates that the top-
ranked approaches on this year’s evaluation set are
consistently better on different new test data com-
ing from the TED Talks domain. Three systems,
two of which end-to-end, were able to outper-
form last year’s top result (21.55 BLEU), which
was obtained by a cascade system. Moreover, two
out of the three systems that also took part in the
IWSLT 2019 campaign (FBK, KIT and SRPOL)
managed to improve their previous scores on the
same dataset. In both cases, they did it with a
large margin: from 3.85 BLEU points for FBK to
4.0 BLEU points for SRPOL. As the 2019 test set
was kept undisclosed, this is another confirmation
of the progress made in one year by ST technol-
ogy in general, and by the end-to-end approach in
particular.

5 Conversational Speech Translation

In conversational speech, there are many phenom-
ena which aren’t present in well-formed text, such
as disfluencies. Disfluencies comprise e.g., filler
words, repetitions, corrections, hesitations, or in-
complete sentences. This differs strongly from
typical machine translation training data. This
mismatch needs to be accounted for when trans-
lating conversational speech both for domain mis-
match as well as generating well-formed, fluent
translations. While previously handled with inter-
mediate processing steps, with the rise of end-to-
end models, how and when to incorporate such a
pre- or post-processing steps between speech pro-
cessing and machine translation is an open ques-
tion.

Disfluency removal typically requires token-
level annotations for that language. However,
most languages and translation corpora do not
such annotations. Using recently collected fluent
references (Salesky et al., 2018) for the common
Fisher Spanish-English dataset, this task poses
several potential questions: how should disflu-
ency removal be incorporated into current conver-
sational speech translation models where transla-
tion may not be done in a pipeline, and can this be
accomplished without training on explicit annota-
tions?

5.1 Challenge

The goal of this task is to provide fluent, English
translations given disfluent Spanish speech or text.
We provide three ways in which submissions may
differ and would be scored separately:

• Systems which translate from speech, or
from text-only

• Systems may be unconstrained (use addi-
tional data beyond what is provided) or con-
strained (use only the Fisher data provided)

• Systems which do and do not use the fluent
references to train

Submissions were scored against the fluent En-
glish translation references for the challenge test
sets, using the automatic metric BLEU (Papineni
et al., 2002a) to assess fluent translations and ME-
TEOR (Lavie and Agarwal, 2007) to assess mean-
ing preservation from the original disfluent data.
By convention to compare with previous published
work on the Fisher translation datasets (Post et al.,
2013), we score using lowercased, detokenized
output with all punctuation except apostrophes re-
moved. At test time, submissions could only be
provided with the evaluation data for their track.
We compare submissions to the baseline models
described in Salesky et al. (2019).

5.2 Data

This task uses the LDC Fisher Spanish speech
(disfluent) (Graff et al.) with new target transla-
tions (fluent) Salesky et al. (2018). This dataset
has 160 hours of speech (138k utterances): this is
a smaller dataset than other tasks, designed to be
approachable. We provide multi-way parallel data
for training:

• disfluent Spanish speech

• disfluent Spanish transcripts (gold)

• disfluent Spanish transcripts (ASR output)

• disfluent English translations

• fluent English translations

Each of these are parallel at level of the train-
ing data, such that the disfluent and fluent trans-
lation references have the same number of utter-
ances. Additional details for the fluent translations
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can be found here: Salesky et al. (2018). We ar-
ranged an evaluation license agreement with the
LDC where all participants could receive this data
without cost for the purposes of this task.

The cslt-test set is originally Fisher dev2
(for which the fluent translations are released for
this first time with this task). We provided partici-
pants with two conditions for each test set for the
text-only track: gold Spanish transcriptions, and
ASR output using the baseline’s ASR model.

5.3 Submissions

We received two submissions, both for the text-
only track, as described below.

Both teams described both constrained and un-
constrained systems. While NAIST submitted
multiple (6) systems, IIT Bombay submitted ul-
timately only their unconstrained system. Both
teams submitted at least one model without fluent
translations used in training – rising to the chal-
lenge goal of this task to generalize beyond avail-
able annotations.

NAIST (Fukuda et al., 2020) used a two-
pronged approach: first, to leverage both a larger
dataset which is out-of-domain (UN Corpus: i.e.
both fluent and also out-of-domain for conversa-
tional speech) they utilize an unsupervised style
transfer model, and second, to adapt between flu-
ent and disfluent parallel corpora for NMT they
pretrain on the original disfluent-disfluent trans-
lations and fine-tune to the target disfluent-fluent
case. They find that their style transfer domain
adaptation was necessary to make the most effec-
tive use of style-transfer, as without it, the domain
mismatch was such that meaning was lost during
disfluent-fluent translation.

IIT Bombay (Saini et al., 2020) submit both
unconstrained and constrained systems, both with-
out use of the parallel fluent translations. They use
data augmentation through noise induction to cre-
ate disfluent–fluent English references from En-
glish NewsCommentary. Their translation model
uses multiple encoders and decoders with shared
layers to balance shared modeling capabilities
while separating domain-specific modeling of e.g.
disfluencies within noised data.

5.4 Results

This task proved challenging but was met by very
inventive and different solutions from each team.
Results are shown in Appendix A.4.

In their respective description papers, the two
teams scored their systems differently, leading to
different trends between the two papers than may
be observed in our evaluation.

The unconstrained submissions from each site
utilized external data in very different ways,
though with the same underlying motivation. Un-
der the matched condition — unconstrained but
no fluent references used during training — given
gold source Spanish transcripts, The submissions
from NAIST (Fukuda et al., 2020) were superior
by up to 2.6 BLEU. We see that this is not the
case, however, when ASR output is the source,
where the IITB submission performs ≈3.4 bet-
ter on BLEU; this submission, in fact, outper-
forms all submitted under any condition, though
it has not been trained on the parallel fluent refer-
ences. This may suggest perhaps that the multi-
encoder and multi-decoder machine translation
model from IITB transferred better to the noise
seen in ASR output. Interestingly, we see a slight
improvement in BLEU for both sites with ASR
output as source under this matched conditions
(e.g. for those models where the fluent data is not
used).

Turning to our second metric, METEOR, where
we assess meaning preservation with the original
disfluent references, we see that the IITB submis-
sion from ASR output preserves much more of the
content contained in the disfluent references, re-
sulting in a much higher METEOR score than all
other submissions. The utterances in these out-
puts are also 10% longer than those of NAIST-
e. Qualitatively, these segments also appear to
have more repetitions than the equivalents trans-
lated from gold transcripts. This suggests perhaps
that NAIST’s noised training using the additional
unconstrained data may have transferred better to
the noise seen in ASR output, causing less of a
change given this challenge condition. This may
not reflected by BLEU computed against fluent
references, because in addition to removing disflu-
ent content, other tokens have been changed. This
reminds us this metric may not capture all aspects
of producing fluent translations.

NAIST submitted 6 models, allowing us to see
additional trends though there are no additional
submissions with matched conditions. The uncon-
strained setting where they leveraged noising of
UN Corpus data gave significant improvements of
≈ 5 BLEU. Surprisingly to us, their submissions
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which do not leverage fluent references in training
are not far behind those which do — the respec-
tive gap between otherwise matched submissions
is typically ≈ 2 BLEU.

Overall, we are very encouraged to see submis-
sions which did not use the fluent parallel data, and
encourage further development in this area!

6 Open Domain Translation

The goals of this task were to further promote
research on translation between Asian languages,
the exploitation of noisy parallel web corpora for
MT, and thoughtful handling of data provenance.

6.1 Challenge

The open domain translation task focused on ma-
chine translation between Chinese and Japanese,
with one track in each direction. We encouraged
participation in both tracks.

We provided two bilingual parallel Chinese-
Japanese corpora, and two additional bilingual Zh-
Ja corpora. The first was a large, noisy set of
segment pairs assembled from web data. Sec-
tion 6.2 describes the data, with further details in
Appendix A.5. The second set was a compila-
tion of existing Japanese-Chinese parallel corpora
from public sources. These include both freely-
downloadable resources and ones released as part
of previous Chinese-Japanese MT efforts. We en-
couraged participants to use only these provided
corpora. The use of other data was allowed, as
long as it was disclosed.

The submitted systems were evaluated on a
held-out, mixed-genre, test set curated to contain
high-quality segment pairs. The official evalua-
tion metric was 4-gram character BLEU (Papineni
et al., 2002c). The scoring script17 was shared
with participants before the evaluation phase.

6.2 Parallel Training Data

We collected all the publicly available, par-
allel Chinese-Japanese corpora we could find,
and made it available to participants as the
existing parallel. These include Global
Voices, News Commentary, and Ubuntu corpora
from OPUS Tiedemann (2012); OpenSubtitles
(Lison and Tiedemann, 2016); TED talks (Dabre
and Kurohashi, 2017); Wikipedia (Chu et al.,

17https://github.com/didi/iwslt2020_
open_domain_translation/blob/master/
eval/bleu.py

2014, 2015); Wiktionary.org; and WikiMatrix
(Schwenk et al., 2019). We also collected parallel
sentences from Tatoeba.org, released under a CC-
BY License. Table 2 lists the size of each of these
existing corpora. In total, we found fewer than 2
million publicly available Chinese-Japanese paral-
lel segments.

Corpus Segments ZH Chars
Crawled (pipeline) 18,966,595 493,902,539
Ubuntu 92,250 1,549,964
Open Subtitles 914,355 10,932,722
TED 376,441 5,345,867
Global Voices 16,848 337,194
Wikipedia 228,565 5,067,489
Wiktionary 62,557 222,562
News Commentary 570 65,038
Tatoeba 4,243 50,846
WikiMatrix 267,409 9,950,657
Total 20,929,833 527,424,878

Table 2: Provided Chinese-Japanese parallel data.

We therefore built a data-harvesting
pipeline to crawl the web for more paral-
lel text. The data collection details can be
found in Appendix A.5. The result was the
webcrawled parallel filtered dataset,
containing nearly 19M hopefully-parallel segment
pairs (494M Zh chars) with provenance infor-
mation. This crawled data combined with the
existing corpora provide 20.9M parallel segments
with 527M Chinese characters. We included
provenance information for each segment pair.

6.3 Unaligned and Unfiltered Data

In addition to the aligned and filtered output of the
pipeline, we released two other variations on the
pipeline output. We hoped these larger yet noisier
versions of the data would be of use for working
on upstream data processing.

We provided a larger aligned, but un-
filtered, version of the web-crawled data
produced by the pipeline after Stage 5
(webcrawled parallel unfiltered).
This corpus contains 161.5M segment pairs, and
is very noisy (e.g. it includes languages other than
Chinese and Japanese). Our expectation is that
more sophisticated filtering of this noisy data will
increase the quantity of good parallel data.

We also released the parallel document con-
tents, with boundaries, from Step 4 in the

https://github.com/didi/iwslt2020_open_domain_translation/blob/master/eval/bleu.py
https://github.com/didi/iwslt2020_open_domain_translation/blob/master/eval/bleu.py
https://github.com/didi/iwslt2020_open_domain_translation/blob/master/eval/bleu.py
https://dumps.wikimedia.org/
https://tatoeba.org
https://creativecommons.org/licenses/by/2.0/fr/
https://creativecommons.org/licenses/by/2.0/fr/
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pipeline shown in Appendix A.5. These docu-
ments are the contents of the webpages paired
by URL (e.g. gotokyo.org/jp/foo and
gotokyo.org/zh/foo), and processed with
BeautifulSoup, but before using Hunalign
(Varga et al., 2005) to extract parallel sentence
pairs. We released 15.6M document pairs as
webcrawled unaligned. Sentence aligner
improvements (and their downstream effects)
could be explored using this provided data.

6.4 Dev and Test Sets

The provided development set consisted of 5304
basic expressions in Japanese and Chinese, from
the Kurohashi-Kawahara Lab at Kyoto Univer-
sity.18 The held-out test set was intended to cover
a variety of topics not known to the participants in
advance. We selected test data from high-quality
(human translated) parallel web content, authored
between January and March 2020. The test set cu-
ration process can be found in Appendix A.5.

This curation produced 1750 parallel segments,
which we divided randomly in half: 875 lines for
the Chinese-to-Japanese translation test set, and
875 lines for the other direction. The Japanese
segments have an average length of 47 characters,
and the Chinese ones have an average length of 35.

6.5 Submissions

Twelve teams submitted systems for both trans-
lation directions, and three more submitted only
for Japanese-to-Chinese. Of the 15 participants, 6
were from academia and 9 were from industry.

We built a baseline system before the compe-
tition began, based on Tensor2Tensor (Vaswani
et al., 2018), and provided participants with the
baseline BLEU scores to benchmark against. We
also provided the source code for training the base-
line, as a potential starting point for experimen-
tation and development. Our source code for the
baseline system is now publicly available.19

The following summarizes some key points
of the participating teams that submitted system
descriptions; broad trends first, and then the
individual systems in reverse-alphabetical order.
Further details for these systems can be found in
the relevant system description papers in the full

18http://nlp.ist.i.kyoto-u.ac.jp/EN/
index.php?JEC%20Basic%20Sentence%20Data

19DiDi baseline source code available at:
github.com/didi/iwslt2020 open domain translation

workshop proceedings.

Architecture: All participants used either the
Transformer architecture (Vaswani et al., 2017b)
or a variant, such as dynamic linear combination
of layers, or transformer-evolved with neural ar-
chitecture search. Most participants submitted en-
semble models, showing consistent improvement
over the component models on the dev set.

Data Filtering: As anticipated, all teams in-
vested significant effort in data cleaning, normal-
ization and filtering of the provided noisy corpora.
A non-exhaustive list of the techniques used in-
cludes length ratios, language id, converting tra-
ditional Chinese characters to simplified, sentence
deduplication, punctuation normalization, and re-
moving html markup.

XIAOMI (Sun et al., 2020) submitted a large
ensemble, exploring the performance of a variety
of Transformer-based architectures. They also in-
corporated domain adaptation, knowledge distilla-
tion, and reranking.

TSUKUBA (Cui et al., 2020) used the unfiltered
data for backtranslation, augmented with synthetic
noise. This was done in conjunction with n-best
list reranking.

SRC-B (Samsung Beijing) (Zhuang et al.,
2020) mined the provided unaligned corpus for
parallel data and for backtranslation. They also
implemented relative position representation for
their Transformer.

OPPO (Zhang et al., 2020) used detailed rule-
based preprocessing and multiple rounds of back-
translation. They also explored using both the un-
filtered parallel dataset (after filtering) and the un-
aligned corpus (after alignment). Their contrastive
system shows the effect of character widths on the
BLEU score.

OCTANOVE (Hagiwara, 2020) augmented the
dev set with high-quality pairs mined from the
training set. This reduced the size of the we-
bcrawled data by 90% before using. Each half of
the discarded pairs was reused for backtranslation.

ISTIC (Wei et al., 2020) used the provided un-
filtered webcrawl data after significant filtering.
They also used adaptation, using elasticsearch to
find sentence pairs similar to the test set, and opti-
mizing the system on them.

DBS Deep Blue Sonics (Su and Ren, 2020) suc-
cessfully added noise to generate augmented data
for backtranslation. They also experimented with

http://nlp.ist.i.kyoto-u.ac.jp/EN/index.php?JEC%20Basic%20Sentence%20Data
http://nlp.ist.i.kyoto-u.ac.jp/EN/index.php?JEC%20Basic%20Sentence%20Data
https://github.com/didi/iwslt2020_open_domain_translation
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language model fusion techniques.
CASIA (Wang et al., 2020b) ensembled many

models into their submission. They used the un-
filtered data for backtranslation, used a domain
classifier based on segment provenance, and also
performed knowledge-distillation. They also used
13k parallel sentences from external data; see the
“External data” note in Section 6.6.

6.6 Results and Discussion

Appendix A.5 contains the results of the Japanese-
to-Chinese and Chinese-to-Japanese open-domain
translation tasks. Some comments follow below.

Data filtering was unsurprisingly helpful. We
released 4 corpora as part of the shared task.
All participants used existing parallel
and webcrawled parallel filtered.
Overall, participants filtered out 15%-90%
of the data, and system performance in-
creased by around 2-5 BLEU points. The
webcrawled parallel unfiltered
corpus was also used successfully, but re-
quired even more aggressive filtering. The
webcrawled unaligned data was even
harder to use, and we were pleased to see some
teams rise to the challenge. Data augmentation
via backtranslation also consistently helped.
However, there was interesting variation in
how participants selected the data to be trans-
lated. Provenance information is not common
in MT evaluations; we were curious how it
would be used. Hagiwara (2020) tried filtering
web crawled parallel filtered using
a provenance indicator, but found it was too
aggressive. Wang et al. (2020b) instead trained a
domain classifier, and used it at decoding time to
reweight the domain-specific translation models
in the ensemble.

External data was explicitly allowed, poten-
tially allowing the sharing of external resources
that were unknown to us. Hagiwara (2020) im-
proved on their submitted system, in a separate
experiment, by gathering 80k external parallel
question-answer pairs from HiNative and incor-
porating them into the training set. Wang et al.
(2020b) also improved their system by adding
13k external sentence pairs from hujiangjp. How-
ever, this inadvertently included data from one of
the websites from which the task’s blind test set
was drawn, resulting in 383/875 and 421/875 ex-
act matching segments on the Chinese side and

Japanese side respectively.
Overall, we are heartened by the participation

in this first edition of the open-domain Chinese-
Japanese shared task, and encourage participation
in the next one.

7 Non-Native Speech Translation

The non-native speech translation task has been
added to IWSLT this year. The task focuses on
the very frequent setting of non-native sponta-
neous speech in somewhat noisy conditions, one
of the test files even contained speech transmitted
through a remote conferencing platform. We were
interested in submissions of both types: the stan-
dard two-stage pipeline (ASR+MT, denoted “Cas-
caded”) as well as end-to-end (“E2E”) solutions.

This first year, we had English as the only
source language and Czech and German as the tar-
get languages. Participants were allowed to submit
just one of the target languages.

The training data sets permitted for “con-
strained” submissions were agreed upon the train-
ing data with the Offline Translation Task (Sec-
tion 4) so that task participants could reuse their
systems in both tasks. Participants were however
also allowed to use any other training data, render-
ing their submissions “unconstrained”.

7.1 Challenge

The main evaluation measure is translation quality
but we invited participants to report time-stamped
outputs if possible, so that we could assess their
systems also using metrics related to simultaneous
speech translation.

In practice, the translation quality is severely
limited by the speech recognition quality. Indeed,
the nature of our test set recordings is extremely
challenging, see below. For that reason, we also
asked the participants with cascaded submissions
to provide their intermediate ASR outputs (again
with exact timing information, if possible) and
score it against our golden transcripts.

A further critical complication is the lack of
input sound segmentation to sentence-like units.
The Offline Speech Translation Task (Section 4)
this year allowed the participants to come up either
with their own segmentation, or to rely upon the
provided sound segments. In the Non-Native task,
no sound segmentation was available. In some
cases, this could have caused even a computational
challenge, because our longest test document is

https://www.hinative.com
https://https://jp.hjenglish.com/new/
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25:55 long, well beyond the common length of
segments in the training corpora. The reference
translations in our test set do come in segments
and we acknowledge the risk of automatic scores
being affected by the (mis-)match of candidate and
reference segmentation, see below.

7.1.1 SLT Evaluation Measures
The SLT evaluation measures were calculated by
SLTev,20 a comprehensive tool for evaluation of
(on-line) spoken language translation.

SLT Quality (BLEU1 and BLEUmw) As said,
we primarily focus on translation quality and we
approximate it with BLEU (Papineni et al., 2002a)
for simplicity, despite all the known shortcomings
of the metric, e.g. Bojar et al. (2010).

BLEU was designed for text translation with a
clear correspondence between source and target
segments (sentences) of the text. We have ex-
plored multiple ways of aligning the segments pro-
duced by the participating SLT systems with the
reference segments. For systems reporting times-
tamps of individual source-language words, the
segment-level alignment can be based on the exact
timing. Unfortunately, only one system provided
this detailed information, so we decided to report
only two simpler variants of BLEU-based metrics:

BLEU1 The whole text is concatenated and
treated as one segment for BLEU. Note that
this is rather inappropriate for longer record-
ings where many n-grams could be matched
far from their correct location.

BLEUmw (mwerSegmenter + standard BLEU).
For this, first we concatenate the whole doc-
ument and segment it using the mwerSeg-
menter tool (Matusov et al., 2005). Then we
calculate the BLEU score for each document
in the test set and report the average.

Since the BLEU implementations differ in
many details, we rely on a stable one, namely
sacreBLEU (Post, 2018).21

SLT Simultaneity In online speech translation,
one can trade translation quality for delay and vice
versa. Waiting for more input generally allows the

20https://github.com/ELITR/SLTev
21We use the default settings, i.e. the signa-

ture BLEU+case.mixed+numrefs.1+smooth.exp+
+tok.13a+version.1.4.6.

system to produce a better translation. A compro-
mise is sought by systems that quickly produce
first candidate outputs and update them later, at
the cost of potentially increasing cognitive load for
the user by showing output that will become irrel-
evant.

The key properties of this trade-off are captured
by observing some form of delay, i.e. how long the
user has to wait for the translation of the various
pieces of the message compared to directly fol-
lowing the source, and flicker, i.e. how much “the
output changes”. We considered several possible
definitions of delay and flicker, including or ignor-
ing information on timing, segmentation, word re-
ordering etc., and calculated each of them for each
submission. For simplicity, report only the follow-
ing ones:

Flicker is inspired by Arivazhagan et al. (2019a).
We report a normalized revision score calcu-
lated by dividing the total number of words
produced by the true output length, i.e. by
the number of words in the completed sen-
tences. We report the average score across all
documents in the test set.

Delayts relies on timing information provided
by the participants for individual segments.
Each produced word is assumed to have ap-
peared at the time that corresponds propor-
tionally to its (character) position in the seg-
ment. The same strategy is used for the refer-
ence words. Note that the candidate segmen-
tation does not need to match the reference
one, but in both cases, we get an estimated
time span for each word.

Delaymw uses mwerSegmenter to first find corre-
spondences between candidate and reference
segments based on the actual words. Then
the same strategy of estimating the timing of
each word is used.

The Delay is summed over all words and di-
vided by the total number of words considered
in the calculation to show the average delay per
word.

Note that we use a simple exact match of the
candidate and reference word; a better strategy
would be to use some form of monolingual word
alignment which could handle e.g. synonyms. In
our case, non-matched words are ignored and do
not contribute to the calculation of the delay at all,

https://github.com/ELITR/SLTev
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Domain Files Overall Duration Segments EN Words CS Words DE Words
Antrecorp 28 0h38m 427 5040 4071 4660
Khan Academy 5 0h18m 346 2886 2272 2660
SAO 6 1h39m 654 11928 9395 10613
Total 39 2h35m 1427 19854 15738 17933

Table 3: Non-Native Speech Translation Task test data composition. Words are estimated simply by splitting at
whitespace without tokenization.

reducing the reliability of the estimate. To provide
an indication of how reliable the reported Delays
are, we list also the percentage of reference words
matched, i.e. successfully found in the candidate
translation. This percentage ranges from 20% to
up to 90% across various submissions.

Note that only one team provided us with timing
details. In order to examine the empirical relations
between these conflicting measures, we focus on
the several contrastive runs submitted by this them
in Section 7.4.1.

7.1.2 ASR Evaluation Measures

The ASR-related scores were also calculated by
SLTev, using the script ASRev which assumes that
the “translation” is just an identity operation.

We decided to calculate WER using two differ-
ent strategies:

WER1 concatenating all segments into one long
sequence of tokens, and

WERmw first concatenating all segments pro-
vided by task participants and then using mw-
erSegmenter to reconstruct the segmentation
that best matches the reference.

In both cases, we pre-process both the candi-
date and reference by lower casing and removing
punctuation.

7.2 Data

7.2.1 Training Data for Constrained
Submissions

The training data was aligned with the Of-
fline Speech Translation Task (Section 4) to al-
low cross-submission in English-to-German SLT.
English-to-Czech was unique to the Non-Native
Task.

The permitted data for constrained submissions
were:

For English ASR:

• LibriSpeech ASR corpus (Panayotov et al.,
2015),

• Mozilla Common Voice,22

• Speech-Translation TED corpus.23

For English→Czech Translation:

• MuST-C (Di Gangi et al., 2019a), release 1.1
contains English-Czech pair,

• CzEng 1.7 (Bojar et al., 2016).24 Note
that CzEng overlaps with English-German
test data of the Offline Speech Transla-
tion Task so it was not allowed to use
this English-Czech corpus to train English-
German (multi-lingual) systems.

For English→Czech Translation:

• All the data for English-German track by
WMT 201925 News Translation Task, i.e.:

– English-German parallel data,

– German monolingual data,

• MuST-C (Di Gangi et al., 2019a), release 1.0
contains English-German pair,

• Speech-Translation TED corpus,26 the
English-German texts,

• WIT3 (Cettolo et al., 2012).

22https://voice.mozilla.org/en/datasets
– English version en 1488h 2019-12-10

23http://i13pc106.ira.uka.de/˜mmueller/
iwslt-corpus.zip

24https://ufal.mff.cuni.cz/czeng/
czeng17

25http://www.statmt.org/wmt19/
26http://i13pc106.ira.uka.de/˜mmueller/

iwslt-corpus.zip

https://voice.mozilla.org/en/datasets
http://i13pc106.ira.uka.de/~mmueller/iwslt-corpus.zip
http://i13pc106.ira.uka.de/~mmueller/iwslt-corpus.zip
https://ufal.mff.cuni.cz/czeng/czeng17
https://ufal.mff.cuni.cz/czeng/czeng17
http://www.statmt.org/wmt19/
http://i13pc106.ira.uka.de/~mmueller/iwslt-corpus.zip
http://i13pc106.ira.uka.de/~mmueller/iwslt-corpus.zip
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7.2.2 Test Data
The test set was prepared by the EU project
ELITR27 which aims at automatic simultaneous
translation of speech into subtitles in the particular
domain of conference speeches on auditing.

The overall size of the test set is in Table 3.
The details about the preparation of test set com-
ponents are in Appendix A.6.

7.3 Submissions

Five teams from three institutions took part in the
task. Each team provided one “primary” sub-
mission and some teams provided several further
“contrastive” submissions. The primary submis-
sions are briefly described in Table 4. Note that
two teams (APPTEK/RWTH and BUT) took the
opportunity to reuse their systems from Offline
Translation Task (Section 4) also in our task.

For the purposes of comparison, we also in-
cluded freely available ASR services and MT ser-
vices by two companies and denote the cascaded
run for each of them as PUBLIC-A and PUBLIC-B.
The ASR was run at the task submission deadline,
the MT was added only later, on May 25, 2020.

7.4 Results

Appendix A.6 presents the results of the
Non-Native Speech Translation Task for
English→German and English→Czech, resp.

Note that the primary choice of most teams does
not agree with which of their runs received the best
scores in our evaluation. This can be easily ex-
plained by the partial domain mismatch between
the development set and the test set.

The scores in both German and Czech results
indicate considerable differences among the sys-
tems both in ASR quality as well as in BLEU
scores. Before drawing strong conclusions from
these scores, one has to consider that the results
are heavily affected by the lack of reliable segmen-
tation. If MT systems receive sequences of words
not well matching sentence boundaries, they tend
to reconstruct the sentence structure, causing seri-
ous translation errors.

The lack of golden sound segmentation also af-
fects the evaluation: mwerSegmenter used in pre-
processing of WERmw and BLEUmw optimizes
WER score but it operates on a slightly differ-
ent tokenization and casing. While the instability
will be small in WER evaluation, it could cause

27http://elitr.eu/

more problems in BLEUmw. Our BLEU calcu-
lation comes from sacreBLEU it its default set-
ting. Furthermore, it needs to be considered that
this is the first instance of the Non-Native shared
task and not all peculiarities of the used evaluation
measures and tools are quite known.28 A manual
evaluation would be desirable but even that would
be inevitably biased depending on the exact way
of presenting system outputs to the annotators. A
procedure for a reliable manual evaluation of spo-
ken language translation without pre-defined seg-
mentation is yet to be sought.

The ASR quality scores29 WER1 and WERmw
are consistent with each other (Pearson
.99), ranging from 14 (best submission by
APPTEK/RWTH) to 33 WER1. WERmw is
always 1–3.5 points absolute higher.

Translation quality scores BLEU1 and BLEUmw
show a similarly high correlation (Pearson .987)
and reach up to 16. For English-to-German, the
best translation was achieved by the secondary
submissions of APPTEK/RWTH, followed by the
primary ELITR-OFFLINE and one of the sec-
ondary submissions of CUNI-NN. The public ser-
vices seem to score worse, PUBLIC-B follows very
closely and PUBLIC-A seems to seriously under-
perform, but it is quite possible that our cascaded
application of their APIs was suboptimal. The
only on-line set of submissions (ELITR) score be-
tween the two public systems.

The situation for English-to-Czech is similar,
except that APPTEK/RWTH did not take part in
this, so ELITR-OFFLINE provided the best ASR
as well as translations (one of their secondary sub-
missions).

Often, there is a big variance of BLEU scores
across all the submissions of one team. This indi-
cates that the test set was hard to prepare for and
that for a practical deployment, testing on the real
input data is critical.

As expected, the ASR quality limits the trans-

28In our analysis, we also used BLEU as implemented in
NLTK (Bird et al., 2009), observing substantial score differ-
ences. For instance, BUT1 received NLTK-BLEU of 12.68
instead of 0.63 reported in Appendix A.6 BLEUmw. For other
submissions, NLTK-BLEU dropped to zero without a clear
reason, possibly some unexpected character in the output.
The explanation of why NLTK can inflate scores is still pend-
ing but it should be performed to be sure that sacreBLEU
does not unduly penalize BUT submissions.

29Note that the same ASR system was often used as the
basis for translation into both Czech and German so the same
ASR scores appear on multiple lines in Tables in Appendix
A.6.

http://elitr.eu/
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Team Paper Training Data Off/On-Line Cascaded
APPTEK/RWTH Bahar et al. (2020a)† Unconstrained Off-Line Cascaded
BUT (unpublished draft) Unconstrained Off-Line Ensemble E2E+Cascaded
CUNI Polák et al. (2020) Unconstrained Off-Line Cascaded
ELITR Machác̆ek et al. (2020) Unconstrained On-Line Cascaded
ELITR-OFFLINE Machác̆ek et al. (2020) Unconstrained Off-Line Cascaded
PUBLIC-A – (public service) Unconstrained Off-Line Cascaded
PUBLIC-B – (public service) Unconstrained Off-Line Cascaded

† The paper describes the basis of the systems but does not explicitly refer to non-native translation task.

Table 4: Primary submissions to Non-Native Speech Translation Task. The public web-based services were added
by task organizers for comparison, no details are known about the underlying systems.

lation quality. WER1 and BLEU1 correlate nega-
tively (Pearson -.82 for translation to German and
-.66 for translation to Czech). Same correlations
were observed for WERmw and BLEUmw.

The test set as well as the system outputs will
be made available at the task web page30 for future
deep inspection.

7.4.1 Trade-Offs in Simultaneous SLT
The trade-offs in simultaneity of the translation
can be studied only on submissions of ELITR,
see Appendix A.6. We see that the Delay ranges
between 1 and up to 2.5 seconds, with Delaymw
giving sligthly lower scores on average, correlated
reasonably well with Delayts (Pearson .989). De-
lay into German seems higher for this particular
set of MT systems.

The best score observed for Flicker is 5.18 and
the worst is 7.51. At the same time, Flicker is not
really negatively correlated with the Delays, e.g.
Delayts vs. Flicker have the Pearson correlation of
-.20.

Unfortunately, our current scoring does not al-
low to study the relationship between the transla-
tion quality and simultaneity, because our BLEU
scores are calculated only on the final segments.
Any intermediate changes to the translation text
are not reflected in the scores.

Note that the timing information on when each
output was produced was provided by the par-
ticipants themselves. A fully reliable evaluation
would require participants installing their systems
on our hardware to avoid effects of network traffic,
which is clearly beyond the goals of this task.

8 Conclusions

The evaluation campaign of the IWSLT 2020 con-
ference offered six challenge tracks which at-
tracted a total of 30 teams, both from academy and

30http://iwslt.org/doku.php?id=non_
native_speech_translation

industry. The increasing number of participants
witnesses the growing interest towards research on
spoken language translation by the NLP commu-
nity, which we believe has been partly driven by
the availability of suitable training resources as
well as the versatility of neural network models,
which now permit to directly tackle complex tasks,
such as speech-to-text translation, which formerly
required building very complex system. We hope
that this trend will continue and invite researchers
interested in proposing new challenges for the next
edition to get in touch with us. Finally, results of
the human evaluation, which was still ongoing at
the time of writing the overview paper, will be re-
ported at the conference and will be included in an
updated version of this paper.

9 Acknowledgements

The offline Speech Translation task has been par-
tially supported by the “End-to-end Spoken Lan-
guage Translation in Rich Data Conditions” Ama-
zon AWS ML Grant. The Non-Native Speech
Translation Task was supported by the grants 19-
26934X (NEUREM3) of the Czech Science Foun-
dation, and H2020-ICT-2018-2-825460 (ELITR)
of the EU. We are also grateful to Mohammad
Mahmoudi for the assistance in the task evalua-
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Tackling Sparse Data Issue in Machine Translation
Evaluation. In Proceedings of the ACL 2010 Confer-
ence Short Papers, pages 86–91, Uppsala, Sweden.
Association for Computational Linguistics.

Mauro Cettolo, Marcello Federico, Luisa Ben-
tivogli, Jan Niehues, Sebastian Stüker, K. Su-
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Martins, and Alexandra Birch. 2018. Marian: Fast
neural machine translation in C++. In Proceedings
of ACL 2018, System Demonstrations, pages 116–
121, Melbourne, Australia. Association for Compu-
tational Linguistics.

Guillaume Klein, Yoon Kim, Yuntian Deng, Jean
Senellart, and Alexander Rush. 2017. OpenNMT:
Open-source toolkit for neural machine translation.
In Proceedings of ACL 2017, System Demonstra-
tions, pages 67–72, Vancouver, Canada. Association
for Computational Linguistics.

Ali Can Kocabiyikoglu, Laurent Besacier, and Olivier
Kraif. 2018. Augmenting Librispeech with French
Translations: A Multimodal Corpus for Direct
Speech Translation Evaluation. In Proceedings of
LREC 2018, Miyazaki, Japan.

Nikhil Kumar Lakumarapu, Beomseok Lee, Sathish
Indurthi, Houjeung Han, Mohd Abbas Zaidi, and
Sangha Kim. 2020. End-to-End Offline Speech
Translation System for IWSLT 2020 using Modal-
ity Agnostic Meta-Learning. In Proceedings of the

17th International Conference on Spoken Language
Translation (IWSLT).

Alon Lavie and Abhaya Agarwal. 2007. METEOR:
An Automatic Metric for MT Evaluation with High
Levels of Correlation with Human Judgments. In
Proceedings of the Second Workshop on Statisti-
cal Machine Translation (WMT), pages 228–231,
Prague, Czech Republic.

Jason Li, Vitaly Lavrukhin, Boris Ginsburg, Ryan
Leary, Oleksii Kuchaiev, Jonathan M Cohen, Huyen
Nguyen, and Ravi Teja Gadde. 2019. Jasper:
An end-to-end convolutional neural acoustic model.
arXiv preprint arXiv:1904.03288.

Pierre Lison and Jörg Tiedemann. 2016. OpenSub-
titles2016: Extracting Large Parallel Corpora from
Movie and TV Subtitles. LREC (International Con-
ference on Language Resources and Evaluation).

Pierre Lison, Jörg Tiedemann, and Milen Kouylekov.
2018. OpenSubtitles2018: Statistical rescoring of
sentence alignments in large, noisy parallel corpora.
In Proceedings of the Eleventh International Confer-
ence on Language Resources and Evaluation (LREC
2018), Miyazaki, Japan. European Language Re-
sources Association (ELRA).

Mingbo Ma, Liang Huang, Hao Xiong, Renjie Zheng,
Kaibo Liu, Baigong Zheng, Chuanqiang Zhang,
Zhongjun He, Hairong Liu, Xing Li, Hua Wu, and
Haifeng Wang. 2019. STACL: Simultaneous trans-
lation with implicit anticipation and controllable la-
tency using prefix-to-prefix framework. In Proceed-
ings of the 57th Annual Meeting of the Association
for Computational Linguistics, pages 3025–3036,
Florence, Italy. Association for Computational Lin-
guistics.
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A.1. Simultaneous Speech Translation
⋅ Summary of the results of the simultaneous speech translation text track.
⋅ Results are reported on the blind test set and systems are grouped by latency regime.
⋅ Tabulated raw data will also be provided on the task web site31 and the repository32.

Team BLEU AP AL DAL

Low Latency

ON-TRAC 23.59 0.77 2.71 3.92

Medium Latency

ON-TRAC 29.38 0.65 5.95 6.94
KIT 29.31 0.63 5.93 6.84
APPTEK/RWTH 28.69 0.65 4.61 7.26
SRSK 27.10 0.91 5.44 6.44

High Latency

ON-TRAC 30.51 0.63 8.71 9.63
KIT 29.76 0.63 6.38 7.32
APPTEK/RWTH 28.69 0.65 4.61 7.26
SRSK 28.49 0.91 6.09 7.13

Unconstrained

ON-TRAC 30.51 0.63 8.71 9.63
KIT 29.76 0.63 6.38 7.32
SRSK 29.41 0.90 15.28 15.68
APPTEK/RWTH 28.69 0.65 4.61 7.26

⋅ Summary of the results of the simultaneous speech translation speech track.
⋅ Results are reported on the blind test set and systems are grouped by latency regime.
⋅ Tabulated raw data will also be provided on the task web site33 and the repository34.

Team BLEU AP AL DAL

Low Latency

SRSK 9.25 1.17 738.75 1102.96
ON-TRAC 7.27 0.97 955.11 1833.27

Medium Latency

ON-TRAC 15.31 0.86 1727.49 3280.03
SRSK 13.58 1.07 1815.93 2243.25

High Latency

ON-TRAC 21.80 0.74 3932.21 5029.31
SRSK 15.70 1.07 3602.02 4677.22

Unconstrained

ON-TRAC 21.80 0.74 3932.21 5029.31
APPTEK/RWTH 21.19 0.74 4123.67 4750.24
SRSK 16.99 1.03 4054.18 4799.37
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A.2. Video Speech Translation
⋅ Systems are ordered according to the CER metrics.
⋅ BLEU and METEOR scores are given as percent figures (%).

Video Translation: Chinese-English
System CER BLEU METEOR chrF

HW TSC 36.54 14.96 30.4 35.2
Online A 37.65 11.97 26.3 32.4
Online B 47.89 13.19 26.0 30.4

Chinese-English: Average sentence-level
BLEU score within CER ranges

CER HW TSC Online A Online B

< 15.0 14.55 11.61 20.75
(15.0, 20.0] 15.72 14.78 17.17
(20.0, 25.0] 13.94 15.18 21.21
(25.0, 30.0] 13.10 7.84 16.38
(30.0, 35.0] 9.58 5.54 15.48
(35.0, 40.0] 5.85 5.77 15.82
> 40.0 7.65 3.32 4.71
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A.3. Offline Speech Translation
⋅ Systems are ordered according to the BLEU metrics.
⋅ BLEU and TER scores are given as percent figures (%).
⋅ End-to-end systems are indicated by gray background.

Speech Translation : TED English-German tst 2020 (own segmentation)
System BLEU TER BEER characTER BLEU(CI) TER(CI)

SRPOL 25.3 59.45 53.16 49.35 26.4 57.60
APPTEK/RWTH 25.06 61.43 53.51 48.24 26.29 59.20
AFRL 23.33 62.12 52.46 50.05 24.53 59.96
APPTEK/RWTH 23.29 64.77 52.31 49.12 24.67 62.42
KIT 22.56 65.56 50.04 53.15 23.71 63.42
ON-TRAC 22.12 63.87 51.20 51.46 23.25 61.85
KIT 21.81 66.50 50.99 51.30 24.21 63.06

Speech Translation : TED English-German tst 2020 (given segmentation)
System BLEU TER BEER characTER BLEU(CI) TER(CI)

APPTEK/RWTH 22.49 65.20 51.40 52.75 23.73 62.93
KIT 22.06 65.38 51.22 51.26 23.24 63.10
SRPOL 21.49 65.74 49.81 56.20 22.7 63.82
FBK 20.75 68.11 49.87 55.31 21.88 66.04
APPTEK/RWTH 20.5 70.08 49.65 54.85 21.84 67.95
KIT 19.82 70.51 48.62 56.91 22 67.36
BHANSS 18.09 71.78 47.09 60.96 19 70.06
HY 17.02 76.37 47.03 58.32 18.07 74.23
DIDI LABS 10.14 101.56 41.95 62.60 10.83 99.60
HY 6.77 86.31 36.81 76.30 7.26 84.91

Speech Translation : TED English-German tst 2019 (own segmentation)
System BLEU TER BEER characTER BLEU(CI) TER(CI)

SRPOL 23.96 60.79 51.45 51.16 24.94 59.12
APPTEK/RWTH 23.4 63.53 52.13 49.23 24.6 61.27
APPTEK/RWTH 21.58 66.15 50.87 50.54 22.85 63.79
AFRL 21.28 64.96 51.11 51.88 22.5 62.66
KIT 21.07 66.59 49.88 52.74 22.33 64.32
KIT 20.43 66.29 50.99 50.26 22.99 62.46
ON-TRAC 20.19 66.38 49.89 52.51 21.23 64.26

Speech Translation : TED English-German tst 2019 (given segmentation)
System BLEU TER BEER characTER BLEU(CI) TER(CI)

SRPOL 20.1 67.73 47.76 59.08 21.17 65.92
FBK 19.52 68.93 48.07 58.26 20.65 66.87
APPTEK/RWTH 19.23 71.22 47.94 57.96 20.53 68.97
KIT 18.83 70.08 47.83 57.88 21.2 66.66
BHANSS 17.85 70.32 46.63 61.01 18.85 68.55
HY 16.44 76.26 46.06 60.42 17.46 74.17
DIDI LABS 10.22 97.01 42.13 62.77 10.95 94.93
HY 7.64 83.85 37.48 75.74 8.25 82.47
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A.4. Conversational Speech Translation
⋅ MT systems are ordered according to the BLEU metric.
⋅ BLEU scores utilize 2 fluent English references to assess fluent translation.
⋅ METEOR scores utilize 4 disfluent English references to test meaning preservation from the original disfluent data.

* = submitted with an off-by-one error on L2077; corrected by the organizers

Text Translation : test, gold transcript
System Constrained? No Fluent Data? BLEU METEOR

NAIST-b 25.6 28.5
NAIST-c 25.4 28.1
NAIST-a ✓ 20.8 25.7
NAIST-f ✓ 23.6 33.8
NAIST-e ✓ 23.1 34.1
IITB ✓ 21.0 33.0
NAIST-d ✓ ✓ 18.5 30.8

Text Translation : test, ASR output
System Constrained? No Fluent Data? BLEU METEOR

NAIST-b 23.9 23.5
NAIST-c 22.0 22.0
NAIST-a ✓ 17.0 21.6
IITB ✓ 28.1* 39.1
NAIST-e ✓ 24.7 31.3
NAIST-f ✓ 24.7 30.9
NAIST-d ✓ ✓ 13.7 22.3
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A.5. Open Domain Translation
Shared translation task overall results for all participants, evaluated with 4-gram character BLEU.
* = collected external parallel training data that inadvertently overlapped with the blind test set.

JA → ZH ZH → JA
Baseline 22.0 Baseline 26.3
CASIA 55.8* CASIA 43.0*
SRC-B 34.0 XIAOMI 34.3
OPPO 32.9 TSUKUBA 33.0
XIAOMI 32.5 OCTANOVE 31.7
TSUKUBA 32.3 DBS 31.2
UEDIN 30.9 OPPO 30.1
KSAI 29.4 UEDIN 29.9
ISTIC 28.2 SRC-B 28.4
DBS 26.9 ISTIC 27.7
OCTANOVE 26.2 NICT 26.3
KINGSOFT 25.3 KSAI 25.9
NICT 22.6 HW-TSC 7.1
HW-TSC 11.6
TAMKANG 1.8
SJTU 0.1

Pipeline for crawling parallel Chinese-Japanese data

The pipeline’s stages, diagrammed in Figure 3, are:

1. Deep-crawl the target URL list. We skipped this step in the first run, and instead started with
5 billion entries from CommonCrawl.35

2. Identify potentially-parallel Chinese-Japanese webpage pairs using URL structure. For example,
https://www.gotokyo.org/jp/ and https://www.gotokyo.org/cn/ only differ
by the country codes jp and cn.

3. Download the potentially parallel page pairs.

4. Strip HTML and markup metadata with the BeautifulSoup Python module. Split each page
into sentence segments.

5. Align segments to be parallel, using Hunalign (Varga et al., 2005).

6. Filter pairs by language ID and length ratio.

The first pipeline run produced 227k URL pairs (1.4m segment pairs) of parallel data containing 28.7m
characters on the Chinese side. We used the 227k URL pairs to trace which domains yielded the most
parallel data. We then re-ran the pipeline on each of the 6000 most-promising domains, but now deep-
crawling the domain using scrapy in Step 1 to produce the URL list examined in Step 2.

We concatenated the parallel output from all the runs, keeping track of the provenance URL
of each segment. Finally, we applied a filter to remove objectionable content. The result was
webcrawled parallel filtered dataset, containing nearly 19m hopefully-parallel segment
pairs (494m Zh chars) with provenance information.

35https://commoncrawl.org/

http://mokk.bme.hu/en/resources/hunalign/
https://commoncrawl.org/
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Figure 3: Pipeline to harvest parallel zh-jp text. The modules are numbered in black, with inputs/outputs in orange.
The examples at the bottom show how the pipeline can be entered at intermediate stages.

Test Set Provenance

The held-out test set was intended to cover a variety of topics not known to the participants in advance.
We selected test data from high-quality (human translated) parallel web content, authored between Jan-
uary and March 2020. Because of this timeframe, COVID19 is a frequent topic in the test set. We
collected bilingual material from 104 webpages, detailed in the Appendix. Table 5.

Pages Source
54 jp.hjenglish.com : Chinese website

with Japanese learning material.
38 j.people.com.cn : the Japanese ver-

sion of the People’s Daily newspaper.
4 china-embassy.or.jp : the Embassy of

China in Japan
4 people.com.cn : the People’s Daily

newspaper, in Chinese.
3 emb-japan.go.jp : the Embassy of

Japan in China
1 kantei.go.jp : the Prime Minister of

Japan’s office

Table 5: Provenance of the Chinese-Japanese test set.

To build the test set, we first identified articles on these sites with translations, and copied their contents
into separate files. All segments were then manually aligned by a native Chinese speaker with basic
knowledge of Japanese, using the InterText tool (Vondricka, 2014). Lastly, a bilingual speaker filtered
the aligned pairs, excluding pairs that were not parallel. This produced 1750 parallel segments, which
we divided randomly in half: 875 lines for the Chinese-to-Japanese translation test set, and 875 lines
for the other direction. The Japanese segments have an average length of 47 characters, and the Chinese
ones have an average length of 35.

https://jp.hjenglish.com
http://j.people.com.cn
http://www.china-embassy.or.jp
http://www.people.com.cn
https://www.cn.emb-japan.go.jp
http://www.kantei.go.jp
https://wanthalf.saga.cz/intertext
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A.6. Non-Native Speech Translation

English→German

⋅ Complete result for English-German SLT systems followed by public systems PUBLIC-A and PUBLIC-B for comparison.
⋅ Primary submissions are indicated by gray background. Best results in bold.

SLT ASR
Quality Simultaneity Quality

System BLEU1 BLEUmw Flicker Delayts[Match%] Delaymw[Match%] WER1 WERmw

APPTEK/RWTH1 14.70 13.28 - - - 14.27 16.26
APPTEK/RWTH2 16.14 15.00 - - - 14.27 16.26
APPTEK/RWTH3 15.92 14.50 - - - 14.27 16.26
BUT1 2.25 0.63 - - - 32.33 34.09
BUT2 2.25 0.67 - - - 32.91 34.46
BUT3 1.93 0.59 - - - 32.91 34.46
BUT4 2.29 0.72 - - 32.91 34.46
CUNI-NN11 6.37 5.86 - - - 28.68 32.10
CUNI-NN12 14.08 12.38 - - - 17.39 20.46
CUNI-NN13 14.32 12.73 - - - 17.02 19.98
CUNI-NN14 6.65 6.20 - - - 28.75 32.23
CUNI-NN15 12.51 10.88 - - - 16.54 18.19
CUNI-NN16 13.15 11.50 - - - 16.33 17.95
ELITR31 9.72 7.22 6.71 1.901 [50.91%] 1.926 [30.01%] 23.77 25.15
ELITR32 9.18 7.32 7.48 1.926 [30.01%] 1.944 [30.42%] 22.91 24.26
ELITR33 9.18 7.32 7.48 1.972 [52.61%] 1.945 [30.43%] 22.91 24.26
ELITR34 9.18 7.32 7.43 1.951 [52.53%] 1.923 [30.41%] 22.91 24.26
ELITR35 9.18 7.32 6.48 2.038 [52.84%] 2.024 [30.76%] 22.91 24.26
ELITR36 9.18 7.32 5.97 2.034 [52.66%] 2.029 [30.79%] 22.91 24.26
ELITR37 9.39 7.05 6.33 2.471 [34.14%] 1.828 [31.81%] 23.81 25.25
ELITR38 9.40 7.06 6.35 2.461 [34.24%] 1.846 [31.85%] 23.81 25.25
ELITR39 9.40 7.06 6.33 2.380 [33.37%] 1.810 [31.63%] 23.81 25.25
ELITR40 9.39 7.05 5.66 2.544 [34.28%] 1.964 [32.28%] 23.81 25.25
ELITR41 9.39 7.06 5.30 2.391 [34.09%] 1.957 [32.28%] 23.81 25.25
ELITR-OFFLINE21 14.83 12.67 - - - 15.29 17.67
ELITR-OFFLINE22 13.31 11.35 - - - 15.29 17.67
ELITR-OFFLINE23 14.08 12.33 - - - 15.29 17.67
ELITR-OFFLINE24 13.03 10.76 - - - 15.29 17.67
ELITR-OFFLINE25 12.88 10.83 - - - 15.29 17.67
ELITR-OFFLINE26 10.45 8.32 - - - 15.29 17.67
ELITR-OFFLINE27 11.58 9.87 - - - 16.33 17.95
ELITR-OFFLINE28 11.76 9.83 - - - 16.33 17.95
ELITR-OFFLINE29 12.51 10.88 - - - 16.33 17.95
ELITR-OFFLINE30 11.34 9.42 - - - 16.33 17.95
ELITR-OFFLINE31 12.51 10.53 - - - 16.33 17.95
ELITR-OFFLINE32 7.89 5.72 - - - 16.33 17.95
CUNI-KALDI01 - - - - - 22.88 24.53
CUNI-KALDI02 - - - - - 30.42 31.17
CUNI-KALDI03 - - - - - 21.25 23.40
PUBLIC-A 4.29 3.02 - - - 30.10 31.09
PUBLIC-B 13.75 12.35 - - - 21.54 23.59
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English→Czech

⋅ Complete result for English-Czech SLT systems followed by public systems PUBLIC-A and PUBLIC-B for comparison.
⋅ Primary submissions are indicated by gray background. Best results in bold.

SLT ASR
Quality Simultaneity Quality

System BLEU1 BLEUmw Flicker Delayts[Match%] Delaymw[Match%] WER1 WERmw

CUNI-NN01 10.57 10.34 - - - 28.68 32.10
CUNI-NN02 10.89 11.50 - - - 17.39 20.46
CUNI-NN03 12.74 11.38 - - - 17.02 19.98
CUNI-NN04 10.24 10.21 - - - 28.75 32.23
CUNI-NN05 11.85 10.57 - - - 16.54 18.19
CUNI-NN06 12.27 11.00 - - - 16.33 17.95
ELITR01 7.87 6.22 7.00 1.530 [42.45%] 1.575 [23.93%] 23.77 25.15
ELITR02 7.56 5.95 6.46 1.696 [22.01%] 1.561 [25.25%] 23.81 25.25
ELITR03 7.56 5.95 6.38 1.744 [22.26%] 1.618 [25.34%] 23.81 25.25
ELITR04 7.54 5.93 6.38 1.725 [22.09%] 1.603 [25.32%] 23.81 25.25
ELITR05 8.93 7.67 7.51 1.605 [44.80%] 1.623 [92.49%] 23.81 25.25
ELITR06 8.79 7.54 7.00 1.198 [52.55%] 1.082 [32.18%] 23.81 25.25
ELITR07 8.93 7.67 6.97 1.596 [44.79%] 1.630 [24.86%] 23.81 25.25
ELITR08 8.93 7.67 6.54 1.586 [44.64%] 1.629 [24.91%] 23.81 25.25
ELITR09 8.93 7.65 7.38 1.520 [42.80%] 1.503 [23.23%] 23.81 25.25
ELITR10 8.93 7.67 7.41 1.630 [44.77%] 1.667 [24.96%] 23.81 25.25
ELITR11 6.50 4.94 6.00 1.677 [20.99%] 1.595 [24.58%] 23.81 25.25
ELITR12 6.50 4.94 6.26 1.610 [20.87%] 1.504 [24.35%] 23.81 25.25
ELITR13 6.50 4.94 6.26 1.495 [19.47%] 1.399 [23.30%] 23.81 25.25
ELITR14 6.52 4.95 5.69 1.650 [20.88%] 1.597 [24.63%] 23.81 25.25
ELITR15 6.50 4.94 5.18 1.541 [20.71%] 1.594 [24.59%] 23.81 25.25
ELITR16 7.40 5.74 6.64 1.633 [21.89%] 1.468 [24.43%] 23.81 25.25
ELITR17 8.45 7.32 6.56 1.597 [44.85%] 1.728 [25.35%] 22.91 24.26
ELITR18 8.36 7.17 6.00 1.514 [45.58%] 1.629 [26.54%] 22.91 24.26
ELITR19 8.56 7.45 5.31 1.600 [46.81%] 1.713 [27.94%] 22.91 24.26
ELITR20 8.55 7.41 6.31 1.557 [45.78%] 1.704 [26.51%] 22.91 24.26
ELITR-OFFLINE01 13.33 11.75 - - - 15.29 17.67
ELITR-OFFLINE02 13.44 11.64 - - - 15.29 17.67
ELITR-OFFLINE03 13.56 11.79 - - - 15.29 17.67
ELITR-OFFLINE04 14.08 12.57 - - - 15.29 17.67
ELITR-OFFLINE05 10.07 8.23 - - - 15.29 17.67
ELITR-OFFLINE06 8.42 6.99 - - - 15.29 17.67
ELITR-OFFLINE07 9.62 8.16 - - - 15.29 17.67
ELITR-OFFLINE08 11.88 10.26 - - - 16.33 17.95
ELITR-OFFLINE09 11.52 9.83 - - - 16.33 17.95
ELITR-OFFLINE10 11.43 9.99 - - - 16.33 17.95
ELITR-OFFLINE11 11.85 10.57 - - - 16.33 17.95
ELITR-OFFLINE12 9.29 7.76 - - - 16.33 17.95
ELITR-OFFLINE13 7.76 6.35 - - - 16.33 17.95
ELITR-OFFLINE14 7.37 6.54 - - - 16.33 17.95
PUBLIC-A 3.30 2.47 - - - 30.10 31.09
PUBLIC-B 10.79 9.85 - - - 21.54 23.59

Test Set Provenance

Only a limited amount of resources could have been invested in the preparations of the test set and the
test set thus build upon some existing datasets. The components of the test sets are:

Antrecorp36 (Macháček et al., 2019), a test set of up to 90-second mock business presentations given
by high school students in very noisy conditions. None of the speakers is a native speaker of
English (see the paper for the composition of nationalities) and their English contains many lexical,
grammatical and pronunciation errors as well as disfluencies due to the spontaneous nature of the
speech.

For the purposes of this task, we equipped Antrecorp with manual translations into Czech and
German. No MT system was used to pre-translate the text to avoid bias in automatic evaluation.

36http://hdl.handle.net/11234/1-3023

http://hdl.handle.net/11234/1-3023
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Because the presentations are very informal and their translation can vary considerably, we created
two independent translations into Czech. In the end, only the first one of them was used as the
reference, to keep BLEU scores across test set parts somewhat comparable.

Khan Academy37 is a large collection of educational videos. The speaker is not a native speaker of
English but his accent is generally rather good. The difficulty in this part of the test lies in the
domain and also the generally missing natural segmentation into sentences.

SAO is a test set created by ELITR particularly for this shared task, to satisfy the need of the Supreme
Audit Office of the Czech Republic. The test sets consists of 6 presentations given in English by
officers of several supreme audit institutions (SAI) in Europe and by the Europan Court of Auditors.
The speakers nationality (Austrian, Belgian, Dutch, Polish, Romanian and Spanish) affects their
accent. The Dutch file is a recording of a remote conference call with further distorted sound
quality.

The development set contained 2 other files from Antrecorp, one other file from the SAO domain and
it also included 4 files from the AMI corpus (Mccowan et al., 2005) to illustrate non-native accents. We
did not include data from AMI corpus in the test set because we found out that some participants trained
their (non-constrained) submissions on it.

For SAO and Antrecorp, our test set was created in the most straightforward way: starting with the
original sound, manual transcription was obtained (with the help of ASR) as a line-oriented plaintext.
The transcribers were instructed to preserve all words uttered38 and break the sequence of words into
sentences in as natural way as possible. Correct punctuation and casing was introduced at this stage,
too. Finally, the documents were translated in Czech and German, preserving the segmentation into
“sentences”.

For the evaluation of SLT simultaneity, we force-aligned words from the transcript to the sound using a
model trained with Jasper (Li et al., 2019) and resorted to fully manual identification of word boundaries
in the few files where forced alignment failed.

Despite a careful curation of the dataset, we are aware of the following limitations. None of them are
too frequent or too serious but they still deserve to be mentioned:

• Khan Academy subtitles never had proper segmentation into sentences and manual correction of
punctuation and casing. The subtitles were supposedly manually refined but the focus was on their
presentation in the running video lecture, not on style and typesetting.

• Khan Academy contains many numbers (written mostly as numbers). For small numbers, both digits
and words are often equally suitable but automatic metrics treat this difference as a mistranslation
and no straightforward reliable normalization is possible either, so we did not apply any.

• Minor translation errors into German were seen in Khan Academy videos and in the “Belgian” SAO
file.

37http://www.khanacademy.org/
38This decision is possibly less common in the ASR community but it is motivated by the subsequent translation step which

has the capacity to recover from disfluences as needed.

http://www.khanacademy.org/

