Cohesive Constraints in a Beam Search Phrase-based Decoder

Nguyen Bach, Stephan VogelColin CherryCarnegie Mellon UniversityMicrosoft Research

Overview

- Apply cohesive constraints during decoding process to consider the source dependency structures
- Introduce extensions of the cohesive constraints.
- Analyze the impact of cohesive constraints across language pairs with different reordering models
- Applied to English-Spanish , English-Iraqi and Chinese-English translation tasks
 - Significant improvements on English-Spanish
 - Stable improvements on other pairs

Outline

- Cohesive Decoding Approach
- Experiments
- Conclusions & Future Work

What is a cohesive decoding?

Interruption Checks (Cherry, 2008)

Two Questions

- How to determine the largest subtree that needs to be completed before the translation process can move elsewhere in the tree?
 - Interruption Check: use left and right most tokens of the previous translated source phrase and climb up the tree
- If a violation happens, how to constrain the decoder to penalize cohesion violated translation hypothesis?
 - Interruption Check : Binary event

Exhaustive Interruption Check

- Interruption Check only penalizes the cohesion violation 1 time
- Should penalties persist as long as violations remain unresolved?
- Exhaustive Interruption Check keeps punishing a cohesion violation until it is fixed.

Exhaustive Interruption Check

Cohesion Violation Penalties

- Interruption Check and Exhaustive Interruption Check: binary event
- Are some violations worse than others?
- Penalize a cohesion violation by *the number of untranslated words* under the largest subtree
 - Interruption Check -> Interruption Count
 - Exhaustive Interruption Check -> Exhaustive Interruption
 Count

Rich Interruption Constraints

- Penalize a cohesion violation by 4 constraints
 - Binary event: violation/not violate
 - Interruption Count: untranslated word count
 - Verb Count: untranslated verb count
 - Noun Count: untranslated noun count

Comparison

		How to penalize a cohesion violation?		
		Binary	Number of untranslated words	Linguistics features
How to detect the largest subtree <i>T(n)</i> ?	The previous phrase	Interruption Check	Interruption Count	Rich Interruption Constraints
	All previous phrases	Exhaustive Interruption Check	Exhaustive Interruption Count	N/A

Outline

- Cohesion Decoding Approach
- Experiments
- Conclusions & Future Work

English-Spanish; English-Iraqi

Cohesive constraints obtained **improvements** over the standard phrase-based decoder.

How does the performance of the dependency parser affect cohesive constraints?

The Role of Dependency Parser on English-Spanish

- Train 2 MALT dependency parser models: M1 with 10% of treebank and M2 with all treebank.
- Performance on CoNLL-07 dependency test set
 - **M1**: 19.41%
 - **M2**: 86.21%
- Apply to MT
 - M2 is better than M1

• Are the improvements subsumed by a strong reordering model and system scale?

• What if we translate from X->English?

GALE Chinese-English

Cohesive constraints obtained improvements even with large scale system and strong reordering models

Outline

- Cohesion Decoding Approach
- Experiments
- Conclusions & Future Work

Conclusions & Future Work

- Conclusions
 - Cohesive constraints are helpful
 - The effectiveness was shown when using with a strong reordering model
 - Obtained improvements with 3 language pairs and also covered a wide range of training corpus sizes, ranging from 500K up to 11M sentence pairs
- Future work
 - A source side dependency reordering model: Learning reordering events of the phrases based on source subtree movements
 - A hierarchical source side dependency reordering model: extend Galley&Manning (2008).

Questions

